nn.modules.Rateο
- class nn.modules.Rate(*args, **kwargs)[source]ο
Bases:
Module
Encapsulates a population of rate neurons, supporting feed-forward and recurrent modules
Examples
Instantiate a feed-forward module with 8 neurons:
>>> mod = Rate(8,) RateEulerJax 'None' with shape (8,)
Instantiate a recurrent module with 12 neurons:
>>> mod_rec = Rate(12, has_rec = True) RateEulerJax 'None' with shape (12,)
Instantiate a feed-forward module with defined time constants:
>>> mod = Rate(7, tau = np.arange(7,) * 10e-3) RateEulerJax 'None' with shape (7,)
This module implements the update equations:
\[ \begin{align}\begin{aligned}\dot{X} = -X + i(t) + W_{rec} H(X) + bias + \sigma \zeta_t X = X + \dot{x} * dt / au\\H(x, t) = relu(x, t) = (x - t) * ((x - t) > 0)\end{aligned}\end{align} \]Attributes overview
Class name of
self
The full name of this module (class plus module name)
The name of this module, or an empty string if
None
The shape of this module
(DEPRECATED) The output size of this module
The input size of this module
The output size of this module
If
True
, this module receives spiking input.If
True
, this module sends spiking output.A vector
(N,)
of the internal state of each neuronThe recurrent weight matrix
(N, N)
for this moduleThe vector
(N,)
of time constants \(\tau\) for each neuronThe vector
(N,)
of bias currents for each neuron(Tensor) Unit thresholds
(Nout,)
or()
The Euler solver time step for this module
The std.
Methods overview
__init__
(shape[,Β tau,Β bias,Β threshold,Β ...])Instantiate a non-spiking rate module, either feed-forward or recurrent.
as_graph
()Convert this module to a computational graph
attributes_named
(name)Search for attributes of this or submodules by time
evolve
(input_data[,Β record])Evolve the state of this module over input data
modules
()Return a dictionary of all sub-modules of this module
parameters
([family])Return a nested dictionary of module and submodule Parameters
Reset all parameters in this module
Reset the state of this module
set_attributes
(new_attributes)Set the attributes and sub-module attributes from a dictionary
simulation_parameters
([family])Return a nested dictionary of module and submodule SimulationParameters
state
([family])Return a nested dictionary of module and submodule States
timed
([output_num,Β dt,Β add_events])Convert this module to a
TimedModule
- __init__(shape: int | ~typing.Tuple[int, int] | ~typing.Tuple[int], tau: float | ~numpy.ndarray | ~torch.Tensor | ~jax._src.numpy.lax_numpy.array | None = None, bias: float | ~numpy.ndarray | ~torch.Tensor | ~jax._src.numpy.lax_numpy.array | None = None, threshold: float | ~numpy.ndarray | ~torch.Tensor | ~jax._src.numpy.lax_numpy.array | None = None, w_rec: ~numpy.ndarray | None = None, weight_init_func: ~typing.Callable = <function unit_eigs>, has_rec: bool = False, activation_func: str | ~typing.Callable = <function H_ReLU>, dt: float = 0.001, noise_std: float = 0.0, *args: list, **kwargs: dict)[source]ο
Instantiate a non-spiking rate module, either feed-forward or recurrent.
- Parameters:
shape (Tuple[int]) β A tuple containing the numer of this module.
tau (float) β A scalar or vector defining the initialisation time constants for the module. If a vector is provided, it must match the output size of the module. Default:
20ms
for each unitbias (float) β A scalar or vector defining the initialisation bias values for the module. If a vector is provided, it must match the output size of the module. Default:
0.
w_rec (np.ndarray) β An optional matrix defining the initialisation recurrent weights for the module.
weight_init_func (Callable) β A function used to initialise the recurrent weights, if used. Default:
unit_eigs()
; initialise such that recurrent feedback has eigenvalues distributed within the unit circle.has_rec (bool) β A flag parameter indicating whether the module has recurrent connections or not. Default:
False
, no recurrent connections.activation_func (Callable) β The activation function of the neurons. This can be provided as a string
['ReLU', 'sigmoid', 'tanh']
, or as a function that accepts a vector of neural states and returns the vector of output activations. Default:'ReLU'
.dt (float) β The Euler solver time-step. Default:
1e-3
noise_std (float) β The std. dev. of normally-distributed noise added to the neural state at each time step. Default:
0.
rng_key (Any) β A Jax PRNG key to initialise the module with. Default: not provided, the module PRNG will be initialised with a random number.
*args β Additional positional arguments
**kwargs β Additional keyword arguments
- _abc_impl = <_abc._abc_data object>ο
- _auto_batch(data: ndarray, states: Tuple = (), target_shapes: Tuple | None = None) Tuple[ndarray, Tuple[ndarray]] ο
Automatically replicate states over batches and verify input dimensions
Examples
>>> data, (state0, state1, state2) = self._auto_batch(data, (self.state0, self.state1, self.state2))
This will verify that
data
has the correct final dimension (i.e.self.size_in
).If
data
has only two dimensions(T, Nin)
, then it will be augmented to(1, T, Nin)
. The individual states will be replicated out from shape(a, b, c, ...)
to(n_batches, a, b, c, ...)
and returned.If
data
has only a single dimension(T,)
, it will be expanded to(1, T, self.size_in)
.state0
,state1
,state2
will be replicated out along the batch dimension.>>> data, (state0,) = self._auto_batch(data, (self.state0,), ((10, -1, self.size_in),))
Attempt to replicate
state0
to a specified size(10, -1, self.size_in)
.- Parameters:
data (np.ndarray) β Input data tensor. Either
(batches, T, Nin)
or(T, Nin)
states (Tuple) β Tuple of state variables. Each will be replicated out over batches by prepending a batch dimension
target_shapes (Tuple) β A tuple of target size tuples, each corresponding to each state argument. The individual states will be replicated out to match the corresponding target sizes. If not provided (the default), then states will be only replicated along batches.
- Returns:
(np.ndarray, Tuple[np.ndarray]) data, states
- _force_set_attributesο
(bool) If
True
, do not sanity-check attributes when setting.
- _get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict ο
Search for attributes of this module and submodules that match a given family
This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string:
"weights"
for weights;"taus"
for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six monthβs time).- Parameters:
type_name (str) β The class of parameters to search for. Must be one of
["Parameter", "SimulationParameter", "State"]
or another future subclass ofParameterBase
family (Union[str, Tuple[str]]) β A string or list or tuple of strings, that define one or more attribute families to search for
- Returns:
A nested dictionary of attributes that match the provided
type_name
andfamily
- Return type:
dict
- _get_attribute_registry() Tuple[Dict, Dict] ο
Return or initialise the attribute registry for this module
- Returns:
registered_attributes, registered_modules
- Return type:
(tuple)
- _has_registered_attribute(name: str) bool ο
Check if the module has a registered attribute
- Parameters:
name (str) β The name of the attribute to check
- Returns:
True
if the attributename
is in the attribute registry,False
otherwise.- Return type:
bool
- _in_Module_initο
(bool) If exists and
True
, indicates that the module is in the__init__
chain.
- _name: str | Noneο
Name of this module, if assigned
- _register_attribute(name: str, val: ParameterBase)ο
Record an attribute in the attribute registry
- Parameters:
name (str) β The name of the attribute to register
val (ParameterBase) β The
ParameterBase
subclass object to register. e.g.Parameter
,SimulationParameter
orState
.
- _register_module(name: str, mod: ModuleBase)ο
Register a sub-module in the module registry
- Parameters:
name (str) β The name of the module to register
mod (ModuleBase) β The
ModuleBase
object to register
- _reset_attribute(name: str) ModuleBase ο
Reset an attribute to its initialisation value
- Parameters:
name (str) β The name of the attribute to reset
- Returns:
For compatibility with the functional API
- Return type:
self (
Module
)
- _shapeο
The shape of this module
- _spiking_input: boolο
Whether this module receives spiking input
- _spiking_output: boolο
Whether this module produces spiking output
- _submodulenames: List[str]ο
Registry of sub-module names
- _wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries] ο
Convert a recorded dictionary to a
TimeSeries
representationThis method is optional, and is provided to make the
timed()
conversion to aTimedModule
work better. You should override this method in your customModule
, to wrap each element of your recorded state dictionary as aTimeSeries
- Parameters:
state_dict (dict) β A recorded state dictionary as returned by
evolve()
t_start (float) β The initial time of the recorded state, to use as the starting point of the time series
- Returns:
The mapped recorded state dictionary, wrapped as
TimeSeries
objects- Return type:
Dict[str, TimeSeries]
- as_graph() GraphModuleBase [source]ο
Convert this module to a computational graph
- Returns:
The computational graph corresponding to this module
- Return type:
- Raises:
NotImplementedError β If
as_graph()
is not implemented for this subclass
- attributes_named(name: Tuple[str] | List[str] | str) dict ο
Search for attributes of this or submodules by time
- Parameters:
name (Union[str, Tuple[str]) β The name of the attribute to search for
- Returns:
A nested dictionary of attributes that match
name
- Return type:
dict
- bias: P_tensorο
The vector
(N,)
of bias currents for each neuron
- property class_name: strο
Class name of
self
- Type:
str
- dt: P_floatο
The Euler solver time step for this module
- evolve(input_data: ndarray, record: bool = False)[source]ο
Evolve the state of this module over input data
NOTE: THIS MODULE CLASS DOES NOT PROVIDE DOCUMENTATION FOR ITS EVOLVE METHOD. PLEASE UPDATE THE DOCUMENTATION FOR THIS MODULE.
- Parameters:
input_data β The input data with shape
(T, size_in)
to evolve withrecord (bool) β If
True
, the module should record internal state during evolution and return the record. IfFalse
, no recording is required. Default:False
.
- Returns:
- (output, new_state, record)
output (np.ndarray): The output response of this module with shape
(T, size_out)
new_state (dict): A dictionary containing the updated state of this and all submodules after evolution record (dict): A dictionary containing recorded state of this and all submodules, if requested using therecord
argument
- Return type:
tuple
- property full_name: strο
The full name of this module (class plus module name)
- Type:
str
- modules() Dict ο
Return a dictionary of all sub-modules of this module
- Returns:
A dictionary containing all sub-modules. Each item will be named with the sub-module name.
- Return type:
dict
- property name: strο
The name of this module, or an empty string if
None
- Type:
str
- noise_std: P_floatο
The std. dev. \(\sigma\) of noise added to internal neuron states at each time step
- parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule Parameters
Use this method to inspect the Parameters from this and all submodules. The optional argument
family
allows you to search for Parameters in a particular family β for example"weights"
for all weights of this module and nested submodules.Although the
family
argument is an arbitrary string, reasonable choises are"weights"
,"taus"
for time constants,"biases"
for biasesβ¦Examples
Obtain a dictionary of all Parameters for this module (including submodules):
>>> mod.parameters() dict{ ... }
Obtain a dictionary of Parameters from a particular family:
>>> mod.parameters("weights") dict{ ... }
- Parameters:
family (str) β The family of Parameters to search for. Default:
None
; return all parameters.- Returns:
A nested dictionary of Parameters of this module and all submodules
- Return type:
dict
- reset_parameters()ο
Reset all parameters in this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- reset_state() ModuleBase ο
Reset the state of this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- set_attributes(new_attributes: dict) ModuleBase ο
Set the attributes and sub-module attributes from a dictionary
This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.
Examples
Use the functional API to evolve, obtain new states, and set those states:
>>> _, new_state, _ = mod(input) >>> mod = mod.set_attributes(new_state)
Obtain a parameter dictionary, modify it, then set the parameters back:
>>> params = mod.parameters() >>> params['w_input'] *= 0. >>> mod.set_attributes(params)
- Parameters:
new_attributes (dict) β A nested dictionary containing parameters of this module and sub-modules.
- property shape: tupleο
The shape of this module
- Type:
tuple
- simulation_parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule SimulationParameters
Use this method to inspect the SimulationParameters from this and all submodules. The optional argument
family
allows you to search for SimulationParameters in a particular family.Examples
Obtain a dictionary of all SimulationParameters for this module (including submodules):
>>> mod.simulation_parameters() dict{ ... }
- Parameters:
family (str) β The family of SimulationParameters to search for. Default:
None
; return all SimulationParameter attributes.- Returns:
A nested dictionary of SimulationParameters of this module and all submodules
- Return type:
dict
- property size: intο
(DEPRECATED) The output size of this module
- Type:
int
- property size_in: intο
The input size of this module
- Type:
int
- property size_out: intο
The output size of this module
- Type:
int
- property spiking_input: boolο
If
True
, this module receives spiking input. IfFalse
, this module expects continuous input.- Type:
bool
- property spiking_outputο
If
True
, this module sends spiking output. IfFalse
, this module sends continuous output.- Type:
bool
- state(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule States
Use this method to inspect the States from this and all submodules. The optional argument
family
allows you to search for States in a particular family.Examples
Obtain a dictionary of all States for this module (including submodules):
>>> mod.state() dict{ ... }
- Parameters:
family (str) β The family of States to search for. Default:
None
; return all State attributes.- Returns:
A nested dictionary of States of this module and all submodules
- Return type:
dict
- tau: P_tensorο
The vector
(N,)
of time constants \(\tau\) for each neuron
- threshold: P_tensorο
(Tensor) Unit thresholds
(Nout,)
or()
- timed(output_num: int = 0, dt: float | None = None, add_events: bool = False)ο
Convert this module to a
TimedModule
- Parameters:
output_num (int) β Specify which output of the module to take, if the module returns multiple output series. Default:
0
, take the first (or only) output.dt (float) β Used to provide a time-step for this module, if the module does not already have one. If
self
already defines a time-step, thenself.dt
will be used. Default:None
add_events (bool) β Iff
True
, theTimedModule
will add events occurring on a single timestep on input and output. Default:False
, donβt add time steps.
Returns:
TimedModule
: A timed module that wraps this module
- w_rec: P_tensorο
The recurrent weight matrix
(N, N)
for this module