nn.modules.TimedModuleο
- class nn.modules.TimedModule(*args, **kwargs)[source]ο
Bases:
ModuleBase
The Rockpool base class for all
TimedModule
modulesTimedModule
provides functionality forModule
s to understand time series data, and to conveniently evolve, handle and return time series data from modules.The
evolve()
method provided byTimedModule
can acceptTimeSeries
objects natively as input, or can accept clocked / rasterised input data.See also
TimedModule
provides the useful methods_prepare_input()
and_gen_timeseries()
to help you in rasterising data for your ownTimedModule
subclasses.For more information on how to used the
TimedModule
API for Rockpool, see β± High-level TimedModule API.Attributes overview
Class name of
self
The full name of this module (class plus module name)
The
TimeSeries
class accepted by this moduleThe name of this module, or an empty string if
None
The
TimeSeries
class returned by this moduleThe shape of this module
(DEPRECATED) The output size of this module
The input size of this module
The output size of this module
If
True
, this module receives spiking input.If
True
, this module sends spiking output.The current evolution time of this layer, in seconds
The simulation and input rasterisation timestep for this
TimedModule
Methods overview
__init__
(dt[,Β spiking_input,Β ...])Initialise this
TimedModule
objectas_graph
()Convert this module to a computational graph
attributes_named
(name)Search for attributes of this or submodules by time
evolve
([ts_input,Β duration,Β num_timesteps,Β ...])Evolve the state of this module over time
modules
()Return a dictionary of all sub-modules of this module
parameters
([family])Return a nested dictionary of module and submodule Parameters
Reset the internal state and time of this module and all sub-modules
Reset all parameters in this module
Reset the state of this module
Reset the internal time of this module and all sub-modules to zero
set_attributes
(new_attributes)Set the attributes and sub-module attributes from a dictionary
simulation_parameters
([family])Return a nested dictionary of module and submodule SimulationParameters
state
([family])Return a nested dictionary of module and submodule States
- __in_TimedModule_init: bool = Falseο
A flag indicating that this
TimedModule
is currently being initialised
- __init__(dt: float | SimulationParameter, spiking_input: bool = False, spiking_output: bool = False, add_events: bool = True, *args, **kwargs)[source]ο
Initialise this
TimedModule
objectWhen initialised, the
TimedModule
will have adt
attribute assigned, as well as initialising the internal module_timestep
,_parent_dt_factor
and_is_child
. The subclassevolve()
method will be wrapped to update the internal timestamp clock.- Parameters:
dt (float) β The duration of a single time step for this module, in seconds
spiking_input (bool) β If
True
, this module acceptsTSEvent
event time series objects as input. IfFalse
(default), this module acceptsTSContinuous
continuous time series objects as input.spiking_output (bool) β If
True
, this module sendsTSEvent
event time series objects as output. IfFalse
(default), this module sendsTSContinuous
continuous time series objects as output.*args β Additional positional arguments
**kwargs β Additional keyword arguments
- _abc_impl = <_abc._abc_data object>ο
- _determine_timesteps(ts_input: TimeSeries | None = None, duration: float | None = None, num_timesteps: int | None = None) int [source]ο
Determine how many time steps to evolve with the given input specification
- Parameters:
ts_input (Optional[TimeSeries]) β TxM or Tx1 time series of input signals for this layer
duration (Optional[float]) β Duration of the desired evolution, in seconds. If not provided,
num_timesteps
or the duration ofts_input
will be used to determine evolution timenum_timesteps (Optional[int]) β Number of evolution time steps, in units of
dt
. If not provided,duration
or the duration ofts_input
will be used to determine evolution time
- Return int:
num_timesteps: Number of evolution time steps
- _evolve_wrapper(ts_input=None, duration=None, num_timesteps=None, kwargs_timeseries=None, record: bool = False, *args, **kwargs) Tuple[TimeSeries, Dict, Dict] [source]ο
Wrap a call to
evolve()
to update the internal time-steps countSee
evolve()
for calling syntax.
- _force_set_attributesο
(bool) If
True
, do not sanity-check attributes when setting.
- _gen_time_trace(t_start: float, num_timesteps: int) ndarray [source]ο
Generate a time trace starting at
t_start
, of lengthnum_timesteps
with time stepdt
- Parameters:
t_start (float) β Start time, in seconds
num_timesteps (int) β Number of time steps to generate, in units of
dt
- Return ndarray:
Generated time trace
- _gen_timeseries(output: ndarray, **kwargs) TimeSeries [source]ο
Wrap a clocked / rasterised output array into a
TimeSeries
objectOutput
TimeSeries
will be of the appropriate subclass, and will be named nicely.- Parameters:
output (np.ndarray) β The clocked or rasterised output data
(T, N)
**kwargs β Additional keyword arguments to
TimeSeries
- Returns:
The data in
output
wrapped into aTimeSeries
object- Return type:
- _gen_tscontinuous(output: ndarray, dt: float | None = None, t_start: float | None = None, name: str | None = None, periodic: bool = False, interp_kind: str = 'previous') TSContinuous [source]ο
Wrap a rasterised output array as a
TSContinuous
object to present as output for this moduleOutput
TSContinuous
s will be named nicely, with correct start times, durations, etc. Several attributes of theTSContinuous
object can be set as arguments here.- Parameters:
output (np.ndarray) β A clocked time series data array
(T, N)
dt (Optional[float]) β The time-step of the clocked array
output
. If not provided, the moduledt
will be usedt_start (Optional[float]) β The start time of the output
TSContinuous
object, in seconds. If not provided, the module time before evolution will be usedname (Optional[str]) β The desired name of the
TSContinuous
object. If not provided, the object will be named nicely according to the module nameperiodic (bool) β Flag to indicate whether the returned
TSContinuous
should be periodic. Default:False
, theTSContinuous
will not be periodicinterp_kind (str) β The style of interpolation to apply to the returned
TSContinuous
object. Default:"previous"
- Returns:
The wrapped output data as a
TSContinuous
object- Return type:
- _gen_tsevent(output: ndarray, dt: float | None = None, t_start: float | None = None, name: str | None = None, periodic: bool = False, num_channels: int | None = None, spikes_at_bin_start: bool = False) TSEvent [source]ο
Wrap a rasterised output array as a
TSEvent
object to present as output for this moduleOutput
TSEvent
s will be named nicely, with correct start timesm durations, etc. Several attributes of theTSEvent
object can be set as arguments here.- Parameters:
output (np.ndarray) β A rasterised event array
(T, N)
dt (Optional[float]) β The time-step of the rasterised array
output
. If not provided, the moduledt
will be usedt_start (Optional[float]) β The start time of the output series, in seconds. If not provided, the module time before evolution will be used
name (Optional[str]) β The desired name of the
TSEvent
object. If not provided, the object will be named nicely according to the module nameperiodic (bool) β Flag to indicate whether the returned
TSEvent
should be periodic. Default:False
, theTSEvent
will not be periodicnum_channels (Optional[int]) β The desired number of total channels for the output
TSEvent
object. If not provided, the output sizesize_out
of the current module will be usedspikes_at_bin_start (bool) β If
False
(default), spike events will be considered to fall in the middle of the time bin they fall in. IfTrue
, all spike events will be considered to occur at the start of the time bin they fall in.
- Returns:
The wrapped output raster as a
TSEvent
object- Return type:
- _get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict ο
Search for attributes of this module and submodules that match a given family
This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string:
"weights"
for weights;"taus"
for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six monthβs time).- Parameters:
type_name (str) β The class of parameters to search for. Must be one of
["Parameter", "SimulationParameter", "State"]
or another future subclass ofParameterBase
family (Union[str, Tuple[str]]) β A string or list or tuple of strings, that define one or more attribute families to search for
- Returns:
A nested dictionary of attributes that match the provided
type_name
andfamily
- Return type:
dict
- _get_attribute_registry() Tuple[Dict, Dict] ο
Return or initialise the attribute registry for this module
- Returns:
registered_attributes, registered_modules
- Return type:
(tuple)
- _has_registered_attribute(name: str) bool ο
Check if the module has a registered attribute
- Parameters:
name (str) β The name of the attribute to check
- Returns:
True
if the attributename
is in the attribute registry,False
otherwise.- Return type:
bool
- _in_Module_initο
(bool) If exists and
True
, indicates that the module is in the__init__
chain.
- _is_child: boolο
Flag indicating that this is a child module
- _name: str | Noneο
Name of this module, if assigned
- _parent_dt_factor: floatο
The factor between the parentβs
dt
and this moduleβsdt
. Given byself.dt / parent.dt
- _prepare_input(ts_input: TimeSeries | None = None, duration: float | None = None, num_timesteps: int | None = None) Tuple[ndarray, ndarray, int] [source]ο
Sample input, set up time base
This function checks an input signal, and prepares a discretised time base according to the time step of the current module
- Parameters:
ts_input (Optional[TimeSeries]) β
TimeSeries
of TxM or Tx1 Input signals for this layerduration (Optional[float]) β Duration of the desired evolution, in seconds. If not provided, then either
num_timesteps
or the duration ofts_input
will define the evolution timenum_timesteps (Optional[int]) β Integer number of evolution time steps, in units of
dt
. If not provided, thenduration
or the duration ofts_input
will define the evolution time
- Return (ndarray, ndarray, int):
(time_base, input_steps, num_timesteps) time_base: T1 Discretised time base for evolution input_raster (T1xN) Discretised input signal for layer num_timesteps: Actual number of evolution time steps, in units of
dt
- _prepare_input_continuous(ts_input: TSContinuous | None = None, duration: float | None = None, num_timesteps: int | None = None) Tuple[ndarray, ndarray, int] [source]ο
Sample input, set up time base
This function checks an input signal, and prepares a discretised time base according to the time step of the current module
- Parameters:
ts_input (Optional[TSContinuous]) β
TSContinuous
of TxM or Tx1 Input signals for this layerduration (Optional[float]) β Duration of the desired evolution, in seconds. If not provided, then either
num_timesteps
or the duration ofts_input
will define the evolution timenum_timesteps (Optional[int]) β Integer number of evolution time steps, in units of
dt
. If not provided, thenduration
or the duration ofts_input
will define the evolution time
- Return (ndarray, ndarray, int):
(time_base, input_raster, num_timesteps) time_base: T1 Discretised time base for evolution input_raster: (T1xN) Discretised input signal for layer num_timesteps: Actual number of evolution time steps, in units of
dt
- _prepare_input_events(ts_input: TSEvent | None = None, duration: float | None = None, num_timesteps: int | None = None, add_events: bool = False) Tuple[ndarray, ndarray, int] [source]ο
Sample input from a
TSEvent
time series, set up evolution time baseThis function checks an input signal, and prepares a discretised time base according to the time step of the current module
- Parameters:
ts_input (Optional[TSEvent]) β TimeSeries of TxM or Tx1 Input signals for this layer
duration (Optional[float]) β Duration of the desired evolution, in seconds. If not provided, then either
num_timesteps
or the duration ofts_input
will determine evolution itmenum_timesteps (Optional[int]) β Number of evolution time steps, in units of
dt
. If not provided, then eitherduration
or the duration ofts_input
will determine evolution time
- Return (ndarray, ndarray, int):
time_base: T1X1 vector of time points β time base for the rasterisation spike_raster: Boolean or integer raster containing spike information. T1xM array num_timesteps: Actual number of evolution time steps, in units of
dt
- _register_attribute(name: str, val: ParameterBase)ο
Record an attribute in the attribute registry
- Parameters:
name (str) β The name of the attribute to register
val (ParameterBase) β The
ParameterBase
subclass object to register. e.g.Parameter
,SimulationParameter
orState
.
- _register_module(name: str, mod: ModuleBase)ο
Register a sub-module in the module registry
- Parameters:
name (str) β The name of the module to register
mod (ModuleBase) β The
ModuleBase
object to register
- _reset_attribute(name: str) ModuleBase ο
Reset an attribute to its initialisation value
- Parameters:
name (str) β The name of the attribute to reset
- Returns:
For compatibility with the functional API
- Return type:
self (
Module
)
- _set_dt(max_factor: float = 100) None [source]ο
Set a time step size for the network which is the lowest common multiple of all sub-moduleβs
dt
s.
- _shapeο
The shape of this module
- _spiking_input: boolο
Whether this module receives spiking input
- _spiking_output: boolο
Whether this module produces spiking output
- _submodulenames: List[str]ο
Registry of sub-module names
- _wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries] ο
Convert a recorded dictionary to a
TimeSeries
representationThis method is optional, and is provided to make the
timed()
conversion to aTimedModule
work better. You should override this method in your customModule
, to wrap each element of your recorded state dictionary as aTimeSeries
- Parameters:
state_dict (dict) β A recorded state dictionary as returned by
evolve()
t_start (float) β The initial time of the recorded state, to use as the starting point of the time series
- Returns:
The mapped recorded state dictionary, wrapped as
TimeSeries
objects- Return type:
Dict[str, TimeSeries]
- as_graph() GraphModuleBase ο
Convert this module to a computational graph
- Returns:
The computational graph corresponding to this module
- Return type:
- Raises:
NotImplementedError β If
as_graph()
is not implemented for this subclass
- attributes_named(name: Tuple[str] | List[str] | str) dict ο
Search for attributes of this or submodules by time
- Parameters:
name (Union[str, Tuple[str]) β The name of the attribute to search for
- Returns:
A nested dictionary of attributes that match
name
- Return type:
dict
- property class_name: strο
Class name of
self
- Type:
str
- dt: float | SimulationParameterο
The simulation and input rasterisation timestep for this
TimedModule
- Type:
float
- abstract evolve(ts_input: TimeSeries | ndarray | None = None, duration: float | None = None, num_timesteps: int | None = None, kwargs_timeseries: dict | None = None, record: bool = False, *args, **kwargs) Tuple[TimeSeries, Dict, Dict] [source]ο
Evolve the state of this module over time
Warning
If you are seeing this message in documentation for a
TimedModule
subclass, then THIS CLASS HAS NOT PROVIDED DOCUMENTATION FOR ITS EVOLVE METHOD. PLEASE UPDATE THE DOCUMENTATION TO INCLUDE SPECIFIC DETAILS FOR THIS CLASS.You need to implement an
evolve()
method for each class which inherits fromTimedModule
.Here is an example
evolve()
method that rasterises a time series and uses the rasterised version for further processing. The output data is re-wrapped as a time series and returned.def evolve(...): # - Rasterise input and prepare input time steps time_base, input_raster, num_timesteps = self._prepare_input( ts_input, duration, num_timesteps ) # - Call sub-modules, do your evolution, etc. # - Return and wrap outputs if necessary return ( self._gen_timeseries(output, **kwargs_timeseries), new_state, record_dict, )
Here is an example
evolve()
method that usesTimeSeries
objects natively. Any rasterisation would be taken care of by submodules, if and when required.def evolve(...): new_state = {} record = {} x1, new_state1, record1 = self.submodule(input_ts) new_state.update({'submodule': new_state1}) record.update({'submodule': record1}) x2, new_state2, record2 = self.submodule2(x1) new_state.update({'submodule2': new_state2}) record.update({'submodule2': record2}) return x2, new_state, record
You can of course use a mixture of these approaches.
- Parameters:
ts_input (Union[TimeSeries, np.ndarray]) β The input time series over which to evolve
duration (float) β The duration over which to evolve, in seconds
num_timesteps (int) β The number of time steps (in terms of the
dt
attribute of this module) to evolve overkwargs_timeseries (Optional[dict]) β Any additional arguments to pass when generating output time series
record (bool) β If
True
, this module and sub-modules must record their state during evolution and return it in therecord_state
dict. IfFalse
(default), no recording is requested*args β Additional positional arguments
**kwargs β Additional keyword arguments
- Returns:
- (output_ts, new_state, record_state)
output_ts
TimeSeries
: A time series containing the output time series produces by this module. new_state dict: A dictionary containing the updated state of this module and sub-modules, after evolution record_state dict: If the argumentrecord
isTrue
,record_state
must contain a dictionary of the recorded states o this and all sub-modules during evolution. Otherwise it may be an empty dict.
- Return type:
tuple
- property full_name: strο
The full name of this module (class plus module name)
- Type:
str
- property input_type: typeο
The
TimeSeries
class accepted by this module- Type:
type
- modules() Dict ο
Return a dictionary of all sub-modules of this module
- Returns:
A dictionary containing all sub-modules. Each item will be named with the sub-module name.
- Return type:
dict
- property name: strο
The name of this module, or an empty string if
None
- Type:
str
- property output_type: typeο
The
TimeSeries
class returned by this module- Type:
type
- parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule Parameters
Use this method to inspect the Parameters from this and all submodules. The optional argument
family
allows you to search for Parameters in a particular family β for example"weights"
for all weights of this module and nested submodules.Although the
family
argument is an arbitrary string, reasonable choises are"weights"
,"taus"
for time constants,"biases"
for biasesβ¦Examples
Obtain a dictionary of all Parameters for this module (including submodules):
>>> mod.parameters() dict{ ... }
Obtain a dictionary of Parameters from a particular family:
>>> mod.parameters("weights") dict{ ... }
- Parameters:
family (str) β The family of Parameters to search for. Default:
None
; return all parameters.- Returns:
A nested dictionary of Parameters of this module and all submodules
- Return type:
dict
- reset_parameters()ο
Reset all parameters in this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- reset_state() ModuleBase ο
Reset the state of this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- set_attributes(new_attributes: dict) ModuleBase ο
Set the attributes and sub-module attributes from a dictionary
This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.
Examples
Use the functional API to evolve, obtain new states, and set those states:
>>> _, new_state, _ = mod(input) >>> mod = mod.set_attributes(new_state)
Obtain a parameter dictionary, modify it, then set the parameters back:
>>> params = mod.parameters() >>> params['w_input'] *= 0. >>> mod.set_attributes(params)
- Parameters:
new_attributes (dict) β A nested dictionary containing parameters of this module and sub-modules.
- property shape: tupleο
The shape of this module
- Type:
tuple
- simulation_parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule SimulationParameters
Use this method to inspect the SimulationParameters from this and all submodules. The optional argument
family
allows you to search for SimulationParameters in a particular family.Examples
Obtain a dictionary of all SimulationParameters for this module (including submodules):
>>> mod.simulation_parameters() dict{ ... }
- Parameters:
family (str) β The family of SimulationParameters to search for. Default:
None
; return all SimulationParameter attributes.- Returns:
A nested dictionary of SimulationParameters of this module and all submodules
- Return type:
dict
- property size: intο
(DEPRECATED) The output size of this module
- Type:
int
- property size_in: intο
The input size of this module
- Type:
int
- property size_out: intο
The output size of this module
- Type:
int
- property spiking_input: boolο
If
True
, this module receives spiking input. IfFalse
, this module expects continuous input.- Type:
bool
- property spiking_outputο
If
True
, this module sends spiking output. IfFalse
, this module sends continuous output.- Type:
bool
- state(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule States
Use this method to inspect the States from this and all submodules. The optional argument
family
allows you to search for States in a particular family.Examples
Obtain a dictionary of all States for this module (including submodules):
>>> mod.state() dict{ ... }
- Parameters:
family (str) β The family of States to search for. Default:
None
; return all State attributes.- Returns:
A nested dictionary of States of this module and all submodules
- Return type:
dict
- property t: floatο
The current evolution time of this layer, in seconds
- Type:
float