This page was generated from docs/reference/params_types.ipynb. Interactive online version: Binder badge

Rockpool Parameter handling

Modules in Rockpool use Parameter objects as initialisation arguments to represent trainable parameters of Module s, especially for the audograd backends for Torch and Jax. Non-trainable parameters are represented by SimulationParameter objects as initialisation arguments.

By default, as many parameters as possible are trainable. If you pass a concrete initialisation value for a parameter, it will be initialised to that value (and will also reset to that value), but will nevertheless remain trainable.

However, Rockpool also provides a convenient interface to disable training for a parameter, and fix it to a constant value. If you wrap a concrete initialisation value with the Constant() call, it will force the corresponding parameter to become a constant, non-trainable SimulationParameter .

Typehints in Rockpool

Rockpool provides a typehints package, providing convenient types to integrate into the Python type hinting system for your own code.

P_int

A Rockpool parameter wrapping an int

P_str

A Rockpool parameter wrapping a str

P_float

A Rockpool parameter wrapping a float

P_bool

A Rockpool parameter wrapping a bool

P_tree

A Rockpool parameter wrapping a nested Python iterable

P_tensor

A Rockpool parameter wrapping a torch Tensor

P_ndarray

A Rockpool parameter wrapping a numpy ndarray

P_Callable

A Rockpool parameter wrapping a callable object (e.g. a function)

Tree

A probably nested Python iterable, such as a tuple or nested dict. The root of a tree.

Leaf

A leaf of a tree

Value

A value in a tree leaf

Node

A node (non-leaf) of a tree

FloatVector

A vector of float s (could be a scalar)

IntVector

A vector of int s (could be a scalar)

JaxTreeDef

A Jax tree definition object

JaxRNGKey

a Jax RNG key object