nn.modules.ButterMelFilterο
- class nn.modules.ButterMelFilter(*args, **kwargs)[source]ο
Bases:
FilterBankBase
Define a Butterworth filter bank (mel spacing) filtering layer with continuous sampled output
Attributes overview
Class name of
self
The full name of this module (class plus module name)
The name of this module, or an empty string if
None
The shape of this module
(DEPRECATED) The output size of this module
The input size of this module
The output size of this module
If
True
, this module receives spiking input.If
True
, this module sends spiking output.(float) Input sampling frequency in Hz
(float) Post-filtering output low-pass cutoff frequency in Hz
(int) Filter order
(int) Number of workers to use in filtering
(bool) Iff
True
, subtract the mean filter output value from each output(bool) Iff
True
, collectively normalise the filter outputs [-1, 1](bool) Iff
True
, perform a low-pass filter after filteringMethods overview
__init__
([shape,Β fs,Β cutoff_fs,Β ...])Layer which applies the butterworth filter in MEL scale to a one-dimensional input signal.
as_graph
()Convert this module to a computational graph
attributes_named
(name)Search for attributes of this or submodules by time
evolve
(input,Β *args,Β **kwargs)Evolve the state of the filterbanks, given an input
modules
()Return a dictionary of all sub-modules of this module
parameters
([family])Return a nested dictionary of module and submodule Parameters
Reset all parameters in this module
Reset the state of this module
set_attributes
(new_attributes)Set the attributes and sub-module attributes from a dictionary
simulation_parameters
([family])Return a nested dictionary of module and submodule SimulationParameters
state
([family])Return a nested dictionary of module and submodule States
timed
([output_num,Β dt,Β add_events])Convert this module to a
TimedModule
- __init__(shape: tuple | int = (1, 64), fs: float = 44100.0, cutoff_fs: float = 100.0, filter_width: float = 2.0, mean_subtraction: bool = False, normalize: bool = False, order: int = 2, num_workers: int = 1, plot: bool = False, use_lowpass: bool = True, *args, **kwargs)[source]ο
Layer which applies the butterworth filter in MEL scale to a one-dimensional input signal. Further dimensions can be passed through the layer without being filtered.
- Parameters:
shape (tuple) β Module shape
(1, N)
fs (float) β input signal sampling frequency
name (str) β name of the layer. Default
"unnamed"
cutoff_fs (float) β lowpass frequency to get only the enveloppe of filters output. Also the lowest frequency of the filter bank. Default:
100 Hz
Donβt set it yourself unless you know what youβre doing.filter_width (float) β The width of the filters which is scaled with the number of filters. This determines the overlap between channels. Default: 2.
order (int) β filter order. Default:
2
mean_subtraction (bool) β subtract the mean of output signals (per channel). Default
False
normalize (bool) β divide output signals by their maximum value (i.e. filter responses in the range [-1, 1]). Default:
False
num_workers (int) β Number of CPU cores to use in simulation. Default:
1
use_lowpass (bool) β Iff
True
, return the filtered rectified smoothed signal. Default:True
. IfFalse
, simply perform the band-pass filtering.plot (bool) β Plots the filter response. Default:
False
- _abc_impl = <_abc._abc_data object>ο
- _auto_batch(data: ndarray, states: Tuple = (), target_shapes: Tuple | None = None) Tuple[ndarray, Tuple[ndarray]] ο
Automatically replicate states over batches and verify input dimensions
Examples
>>> data, (state0, state1, state2) = self._auto_batch(data, (self.state0, self.state1, self.state2))
This will verify that
data
has the correct final dimension (i.e.self.size_in
).If
data
has only two dimensions(T, Nin)
, then it will be augmented to(1, T, Nin)
. The individual states will be replicated out from shape(a, b, c, ...)
to(n_batches, a, b, c, ...)
and returned.If
data
has only a single dimension(T,)
, it will be expanded to(1, T, self.size_in)
.state0
,state1
,state2
will be replicated out along the batch dimension.>>> data, (state0,) = self._auto_batch(data, (self.state0,), ((10, -1, self.size_in),))
Attempt to replicate
state0
to a specified size(10, -1, self.size_in)
.- Parameters:
data (np.ndarray) β Input data tensor. Either
(batches, T, Nin)
or(T, Nin)
states (Tuple) β Tuple of state variables. Each will be replicated out over batches by prepending a batch dimension
target_shapes (Tuple) β A tuple of target size tuples, each corresponding to each state argument. The individual states will be replicated out to match the corresponding target sizes. If not provided (the default), then states will be only replicated along batches.
- Returns:
(np.ndarray, Tuple[np.ndarray]) data, states
- _force_set_attributesο
(bool) If
True
, do not sanity-check attributes when setting.
- static _generate_chunks(l, n) list ο
Generates chunks of data
- _get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict ο
Search for attributes of this module and submodules that match a given family
This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string:
"weights"
for weights;"taus"
for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six monthβs time).- Parameters:
type_name (str) β The class of parameters to search for. Must be one of
["Parameter", "SimulationParameter", "State"]
or another future subclass ofParameterBase
family (Union[str, Tuple[str]]) β A string or list or tuple of strings, that define one or more attribute families to search for
- Returns:
A nested dictionary of attributes that match the provided
type_name
andfamily
- Return type:
dict
- _get_attribute_registry() Tuple[Dict, Dict] ο
Return or initialise the attribute registry for this module
- Returns:
registered_attributes, registered_modules
- Return type:
(tuple)
- _has_registered_attribute(name: str) bool ο
Check if the module has a registered attribute
- Parameters:
name (str) β The name of the attribute to check
- Returns:
True
if the attributename
is in the attribute registry,False
otherwise.- Return type:
bool
- _in_Module_initο
(bool) If exists and
True
, indicates that the module is in the__init__
chain.
- _name: str | Noneο
Name of this module, if assigned
- static _process_filters(args) list ο
Method for processing the filters each worker executes
- _register_attribute(name: str, val: ParameterBase)ο
Record an attribute in the attribute registry
- Parameters:
name (str) β The name of the attribute to register
val (ParameterBase) β The
ParameterBase
subclass object to register. e.g.Parameter
,SimulationParameter
orState
.
- _register_module(name: str, mod: ModuleBase)ο
Register a sub-module in the module registry
- Parameters:
name (str) β The name of the module to register
mod (ModuleBase) β The
ModuleBase
object to register
- _reset_attribute(name: str) ModuleBase ο
Reset an attribute to its initialisation value
- Parameters:
name (str) β The name of the attribute to reset
- Returns:
For compatibility with the functional API
- Return type:
self (
Module
)
- _shapeο
The shape of this module
- _spiking_input: boolο
Whether this module receives spiking input
- _spiking_output: boolο
Whether this module produces spiking output
- _submodulenames: List[str]ο
Registry of sub-module names
- _terminate()ο
Terminates all processes in the worker _pool
- _wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries] ο
Convert a recorded dictionary to a
TimeSeries
representationThis method is optional, and is provided to make the
timed()
conversion to aTimedModule
work better. You should override this method in your customModule
, to wrap each element of your recorded state dictionary as aTimeSeries
- Parameters:
state_dict (dict) β A recorded state dictionary as returned by
evolve()
t_start (float) β The initial time of the recorded state, to use as the starting point of the time series
- Returns:
The mapped recorded state dictionary, wrapped as
TimeSeries
objects- Return type:
Dict[str, TimeSeries]
- as_graph() GraphModuleBase ο
Convert this module to a computational graph
- Returns:
The computational graph corresponding to this module
- Return type:
- Raises:
NotImplementedError β If
as_graph()
is not implemented for this subclass
- attributes_named(name: Tuple[str] | List[str] | str) dict ο
Search for attributes of this or submodules by time
- Parameters:
name (Union[str, Tuple[str]) β The name of the attribute to search for
- Returns:
A nested dictionary of attributes that match
name
- Return type:
dict
- property class_name: strο
Class name of
self
- Type:
str
- cutoff_fs: P_floatο
(float) Post-filtering output low-pass cutoff frequency in Hz
- evolve(input: ndarray, *args, **kwargs) Tuple[ndarray, dict, dict] ο
Evolve the state of the filterbanks, given an input
- Parameters:
input (np.ndarray) β Raw input signal
- fs: P_floatο
(float) Input sampling frequency in Hz
- property full_name: strο
The full name of this module (class plus module name)
- Type:
str
- mean_subtraction: P_boolο
(bool) Iff
True
, subtract the mean filter output value from each output
- modules() Dict ο
Return a dictionary of all sub-modules of this module
- Returns:
A dictionary containing all sub-modules. Each item will be named with the sub-module name.
- Return type:
dict
- property name: strο
The name of this module, or an empty string if
None
- Type:
str
- normalize: P_boolο
(bool) Iff
True
, collectively normalise the filter outputs [-1, 1]
- num_workers: P_intο
(int) Number of workers to use in filtering
- order: P_intο
(int) Filter order
- parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule Parameters
Use this method to inspect the Parameters from this and all submodules. The optional argument
family
allows you to search for Parameters in a particular family β for example"weights"
for all weights of this module and nested submodules.Although the
family
argument is an arbitrary string, reasonable choises are"weights"
,"taus"
for time constants,"biases"
for biasesβ¦Examples
Obtain a dictionary of all Parameters for this module (including submodules):
>>> mod.parameters() dict{ ... }
Obtain a dictionary of Parameters from a particular family:
>>> mod.parameters("weights") dict{ ... }
- Parameters:
family (str) β The family of Parameters to search for. Default:
None
; return all parameters.- Returns:
A nested dictionary of Parameters of this module and all submodules
- Return type:
dict
- reset_parameters()ο
Reset all parameters in this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- reset_state() ModuleBase ο
Reset the state of this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- set_attributes(new_attributes: dict) ModuleBase ο
Set the attributes and sub-module attributes from a dictionary
This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.
Examples
Use the functional API to evolve, obtain new states, and set those states:
>>> _, new_state, _ = mod(input) >>> mod = mod.set_attributes(new_state)
Obtain a parameter dictionary, modify it, then set the parameters back:
>>> params = mod.parameters() >>> params['w_input'] *= 0. >>> mod.set_attributes(params)
- Parameters:
new_attributes (dict) β A nested dictionary containing parameters of this module and sub-modules.
- property shape: tupleο
The shape of this module
- Type:
tuple
- simulation_parameters(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule SimulationParameters
Use this method to inspect the SimulationParameters from this and all submodules. The optional argument
family
allows you to search for SimulationParameters in a particular family.Examples
Obtain a dictionary of all SimulationParameters for this module (including submodules):
>>> mod.simulation_parameters() dict{ ... }
- Parameters:
family (str) β The family of SimulationParameters to search for. Default:
None
; return all SimulationParameter attributes.- Returns:
A nested dictionary of SimulationParameters of this module and all submodules
- Return type:
dict
- property size: intο
(DEPRECATED) The output size of this module
- Type:
int
- property size_in: intο
The input size of this module
- Type:
int
- property size_out: intο
The output size of this module
- Type:
int
- property spiking_input: boolο
If
True
, this module receives spiking input. IfFalse
, this module expects continuous input.- Type:
bool
- property spiking_outputο
If
True
, this module sends spiking output. IfFalse
, this module sends continuous output.- Type:
bool
- state(family: Tuple | List | str | None = None) Dict ο
Return a nested dictionary of module and submodule States
Use this method to inspect the States from this and all submodules. The optional argument
family
allows you to search for States in a particular family.Examples
Obtain a dictionary of all States for this module (including submodules):
>>> mod.state() dict{ ... }
- Parameters:
family (str) β The family of States to search for. Default:
None
; return all State attributes.- Returns:
A nested dictionary of States of this module and all submodules
- Return type:
dict
- timed(output_num: int = 0, dt: float | None = None, add_events: bool = False)ο
Convert this module to a
TimedModule
- Parameters:
output_num (int) β Specify which output of the module to take, if the module returns multiple output series. Default:
0
, take the first (or only) output.dt (float) β Used to provide a time-step for this module, if the module does not already have one. If
self
already defines a time-step, thenself.dt
will be used. Default:None
add_events (bool) β Iff
True
, theTimedModule
will add events occurring on a single timestep on input and output. Default:False
, donβt add time steps.
Returns:
TimedModule
: A timed module that wraps this module
- use_lowpass: P_boolο
(bool) Iff
True
, perform a low-pass filter after filtering