devices.xylo.syns63300.imuif.FilterBank

class devices.xylo.syns63300.imuif.FilterBank(*args, **kwargs)[source]

Bases: Module

This class builds the block-diagram version of the filters, which is exactly as it is done in HW.

NOTE: Here we have considered a collection of candidate band-pass filters that have the potential to be chosen and implemented by the algorithm team. Here we make sure that all those filters work properly.

Attributes overview

B_af_list

List of B_af values of all filters

B_b_list

List of B_b values of all filters

B_wf_list

List of B_wf values of all filters

a1_list

List of a1 values of all filters

a2_list

List of a2 values of all filters

class_name

Class name of self

full_name

The full name of this module (class plus module name)

name

The name of this module, or an empty string if None

shape

The shape of this module

size

(DEPRECATED) The output size of this module

size_in

The input size of this module

size_out

The output size of this module

spiking_input

If True, this module receives spiking input.

spiking_output

If True, this module sends spiking output.

Methods overview

__init__([shape])

Build a FilterBank simulation by specifying pass bands for individual filters

as_graph()

Convert this module to a computational graph

attributes_named(name)

Search for attributes of this or submodules by time

evolve(input_data[, record])

Compute the output of all filters for an input signal.

from_specification([shape])

Create a filter bank with the given frequency bands.

modules()

Return a dictionary of all sub-modules of this module

parameters([family])

Return a nested dictionary of module and submodule Parameters

reset_parameters()

Reset all parameters in this module

reset_state()

Reset the state of this module

set_attributes(new_attributes)

Set the attributes and sub-module attributes from a dictionary

simulation_parameters([family])

Return a nested dictionary of module and submodule SimulationParameters

state([family])

Return a nested dictionary of module and submodule States

timed([output_num, dt, add_events])

Convert this module to a TimedModule

property B_af_list: List[int]

List of B_af values of all filters

property B_b_list: List[int]

List of B_b values of all filters

property B_wf_list: List[int]

List of B_wf values of all filters

__init__(shape: Tuple | int | None = (3, 15), *args: List[BandPassFilter] | List[Tuple[float]]) None[source]

Build a FilterBank simulation by specifying pass bands for individual filters

Parameters:
  • shape (Optional[Union[Tuple, int]], optional) – The number of input and output channels. Defaults to (3, 15).

  • *args – A list of BandPassFilter`s to register to the filterbank. Defaults to `None; use a default filterbank configuration.

_abc_impl = <_abc._abc_data object>
_auto_batch(data: ndarray, states: Tuple = (), target_shapes: Tuple | None = None) Tuple[ndarray, Tuple[ndarray]]

Automatically replicate states over batches and verify input dimensions

Examples

>>> data, (state0, state1, state2) = self._auto_batch(data, (self.state0, self.state1, self.state2))

This will verify that data has the correct final dimension (i.e. self.size_in).

If data has only two dimensions (T, Nin), then it will be augmented to (1, T, Nin). The individual states will be replicated out from shape (a, b, c, ...) to (n_batches, a, b, c, ...) and returned.

If data has only a single dimension (T,), it will be expanded to (1, T, self.size_in).

state0, state1, state2 will be replicated out along the batch dimension.

>>> data, (state0,) = self._auto_batch(data, (self.state0,), ((10, -1, self.size_in),))

Attempt to replicate state0 to a specified size (10, -1, self.size_in).

Parameters:
  • data (np.ndarray) – Input data tensor. Either (batches, T, Nin) or (T, Nin)

  • states (Tuple) – Tuple of state variables. Each will be replicated out over batches by prepending a batch dimension

  • target_shapes (Tuple) – A tuple of target size tuples, each corresponding to each state argument. The individual states will be replicated out to match the corresponding target sizes. If not provided (the default), then states will be only replicated along batches.

Returns:

(np.ndarray, Tuple[np.ndarray]) data, states

_channel_mapping

Mapping from IMU channels to filter channels. Equal number of filters per channel by default, with all filters for each input channel in order of input channel. e.g. [0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2] or similar

_force_set_attributes

(bool) If True, do not sanity-check attributes when setting.

_get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict

Search for attributes of this module and submodules that match a given family

This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string: "weights" for weights; "taus" for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six month’s time).

Parameters:
  • type_name (str) – The class of parameters to search for. Must be one of ["Parameter", "SimulationParameter", "State"] or another future subclass of ParameterBase

  • family (Union[str, Tuple[str]]) – A string or list or tuple of strings, that define one or more attribute families to search for

Returns:

A nested dictionary of attributes that match the provided type_name and family

Return type:

dict

_get_attribute_registry() Tuple[Dict, Dict]

Return or initialise the attribute registry for this module

Returns:

registered_attributes, registered_modules

Return type:

(tuple)

_has_registered_attribute(name: str) bool

Check if the module has a registered attribute

Parameters:

name (str) – The name of the attribute to check

Returns:

True if the attribute name is in the attribute registry, False otherwise.

Return type:

bool

_in_Module_init

(bool) If exists and True, indicates that the module is in the __init__ chain.

_name: str | None

Name of this module, if assigned

_register_attribute(name: str, val: ParameterBase)

Record an attribute in the attribute registry

Parameters:
  • name (str) – The name of the attribute to register

  • val (ParameterBase) – The ParameterBase subclass object to register. e.g. Parameter, SimulationParameter or State.

_register_module(name: str, mod: ModuleBase)

Register a sub-module in the module registry

Parameters:
  • name (str) – The name of the module to register

  • mod (ModuleBase) – The ModuleBase object to register

_reset_attribute(name: str) ModuleBase

Reset an attribute to its initialisation value

Parameters:

name (str) – The name of the attribute to reset

Returns:

For compatibility with the functional API

Return type:

self (Module)

_shape

The shape of this module

_spiking_input: bool

Whether this module receives spiking input

_spiking_output: bool

Whether this module produces spiking output

_submodulenames: List[str]

Registry of sub-module names

_wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries]

Convert a recorded dictionary to a TimeSeries representation

This method is optional, and is provided to make the timed() conversion to a TimedModule work better. You should override this method in your custom Module, to wrap each element of your recorded state dictionary as a TimeSeries

Parameters:
  • state_dict (dict) – A recorded state dictionary as returned by evolve()

  • t_start (float) – The initial time of the recorded state, to use as the starting point of the time series

Returns:

The mapped recorded state dictionary, wrapped as TimeSeries objects

Return type:

Dict[str, TimeSeries]

property a1_list: List[int]

List of a1 values of all filters

property a2_list: List[int]

List of a2 values of all filters

as_graph() GraphModuleBase

Convert this module to a computational graph

Returns:

The computational graph corresponding to this module

Return type:

GraphModuleBase

Raises:

NotImplementedError – If as_graph() is not implemented for this subclass

attributes_named(name: Tuple[str] | List[str] | str) dict

Search for attributes of this or submodules by time

Parameters:

name (Union[str, Tuple[str]) – The name of the attribute to search for

Returns:

A nested dictionary of attributes that match name

Return type:

dict

property class_name: str

Class name of self

Type:

str

evolve(input_data: ndarray, record: bool = False) Tuple[ndarray, Dict[str, Any], Dict[str, Any]][source]

Compute the output of all filters for an input signal. Combine the filtering done in the AR and MA part of the block-diagram representation.

Parameters:

input_data (np.ndarray) – the quantized input signal of datatype python.object integer. (BxTxC)

Returns:

np.ndarray: the filtered output signal of all filters (BxTxC) dict: empty record dictionary. dict: empty state dictionary.

Return type:

Tuple[np.ndarray, Dict[str, Any], Dict[str, Any]]

classmethod from_specification(shape: Tuple[int] = (3, 15), *args: List[Tuple[float]]) FilterBank[source]

Create a filter bank with the given frequency bands.

Parameters:

*args (List[Tuple[float]]) – A list of tuples containing the lower and upper cut-off frequencies of the filters.

Returns:

the filter bank with the given frequency bands.

Return type:

FilterBank

property full_name: str

The full name of this module (class plus module name)

Type:

str

modules() Dict

Return a dictionary of all sub-modules of this module

Returns:

A dictionary containing all sub-modules. Each item will be named with the sub-module name.

Return type:

dict

property name: str

The name of this module, or an empty string if None

Type:

str

parameters(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule Parameters

Use this method to inspect the Parameters from this and all submodules. The optional argument family allows you to search for Parameters in a particular family — for example "weights" for all weights of this module and nested submodules.

Although the family argument is an arbitrary string, reasonable choises are "weights", "taus" for time constants, "biases" for biases…

Examples

Obtain a dictionary of all Parameters for this module (including submodules):

>>> mod.parameters()
dict{ ... }

Obtain a dictionary of Parameters from a particular family:

>>> mod.parameters("weights")
dict{ ... }
Parameters:

family (str) – The family of Parameters to search for. Default: None; return all parameters.

Returns:

A nested dictionary of Parameters of this module and all submodules

Return type:

dict

reset_parameters()

Reset all parameters in this module

Returns:

The updated module is returned for compatibility with the functional API

Return type:

Module

reset_state() ModuleBase

Reset the state of this module

Returns:

The updated module is returned for compatibility with the functional API

Return type:

Module

set_attributes(new_attributes: dict) ModuleBase

Set the attributes and sub-module attributes from a dictionary

This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.

Examples

Use the functional API to evolve, obtain new states, and set those states:

>>> _, new_state, _ = mod(input)
>>> mod = mod.set_attributes(new_state)

Obtain a parameter dictionary, modify it, then set the parameters back:

>>> params = mod.parameters()
>>> params['w_input'] *= 0.
>>> mod.set_attributes(params)
Parameters:

new_attributes (dict) – A nested dictionary containing parameters of this module and sub-modules.

property shape: tuple

The shape of this module

Type:

tuple

simulation_parameters(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule SimulationParameters

Use this method to inspect the SimulationParameters from this and all submodules. The optional argument family allows you to search for SimulationParameters in a particular family.

Examples

Obtain a dictionary of all SimulationParameters for this module (including submodules):

>>> mod.simulation_parameters()
dict{ ... }
Parameters:

family (str) – The family of SimulationParameters to search for. Default: None; return all SimulationParameter attributes.

Returns:

A nested dictionary of SimulationParameters of this module and all submodules

Return type:

dict

property size: int

(DEPRECATED) The output size of this module

Type:

int

property size_in: int

The input size of this module

Type:

int

property size_out: int

The output size of this module

Type:

int

property spiking_input: bool

If True, this module receives spiking input. If False, this module expects continuous input.

Type:

bool

property spiking_output

If True, this module sends spiking output. If False, this module sends continuous output.

Type:

bool

state(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule States

Use this method to inspect the States from this and all submodules. The optional argument family allows you to search for States in a particular family.

Examples

Obtain a dictionary of all States for this module (including submodules):

>>> mod.state()
dict{ ... }
Parameters:

family (str) – The family of States to search for. Default: None; return all State attributes.

Returns:

A nested dictionary of States of this module and all submodules

Return type:

dict

timed(output_num: int = 0, dt: float | None = None, add_events: bool = False)

Convert this module to a TimedModule

Parameters:
  • output_num (int) – Specify which output of the module to take, if the module returns multiple output series. Default: 0, take the first (or only) output.

  • dt (float) – Used to provide a time-step for this module, if the module does not already have one. If self already defines a time-step, then self.dt will be used. Default: None

  • add_events (bool) – Iff True, the TimedModule will add events occurring on a single timestep on input and output. Default: False, don’t add time steps.

Returns: TimedModule: A timed module that wraps this module