devices.xylo.syns63300.IMUIFSim
- class devices.xylo.syns63300.IMUIFSim(*args, **kwargs)[source]
Bases:
Module
A
Module
that simulates the IMU signal preprocessing on Xylo IMUThis module simulates the Xylo IMU front-end stage. This is a signal-to-event core that consists of rotation removal units, low-pass filters, and a spike generator. The module takes in a 3D IMU signal and outputs a spike train.
See also
For example usage of the
IMUIFSim
Module, see ∿ The Xylo™IMU preprocessing interfaceAttributes overview
Class name of
self
The full name of this module (class plus module name)
The name of this module, or an empty string if
None
The shape of this module
(DEPRECATED) The output size of this module
The input size of this module
The output size of this module
If
True
, this module receives spiking input.If
True
, this module sends spiking output.The sequential module that simulates the IMU front-end
(float) Time-step of the encoding simulation in seconds
Methods overview
__init__
([shape, select_iaf_output, ...])Object constructor
as_graph
()Convert this module to a computational graph
attributes_named
(name)Search for attributes of this or submodules by time
evolve
(input_data[, record])Processes the input IMU signal sample-by-sample and generate spikes
Export the current configuration of the IMUIF module
from_config
(config)Obtain an instance of IMUIFSim from a samna configuration object
from_specification
(*args, **kwargs)modules
()Return a dictionary of all sub-modules of this module
parameters
([family])Return a nested dictionary of module and submodule Parameters
Reset all parameters in this module
Reset the state of this module
set_attributes
(new_attributes)Set the attributes and sub-module attributes from a dictionary
simulation_parameters
([family])Return a nested dictionary of module and submodule SimulationParameters
state
([family])Return a nested dictionary of module and submodule States
timed
([output_num, dt, add_events])Convert this module to a
TimedModule
- __init__(shape: Tuple | int | None = (3, 15), select_iaf_output: bool = False, bypass_jsvd: bool = False, filter_list: List[BandPassFilter] | None = None, scale_values: List[int] | int = 5, iaf_threshold_values: List[int] | int = 1024, num_avg_bitshift: int = 4, SAH_period: int = 10, sampling_freq: float = 200.0) None [source]
Object constructor
- Parameters:
shape (Optional[Union[Tuple, int]], optional) – the shape of the input-output transformation. Defaults to (3, 15).
select_iaf_output (bool, optional) – If true, the output of the module is encoded using IAF spike encoding. If false, the output of the module is encoded using scale spike encoding. Defaults to False.
bypass_jsvd (bool, optional) – If true, the module does not perform the rotation removal stage. Defaults to False.
filter_list (Optional[List[BandPassFilter]], optional) – the list of filters of the filterbank. Note that first 5 filters will apply to the first input channel, the second 5 filters apply to the second input channel, and the last 5 filters will apply to the 3rd input channel. Defaults to None, when it’s None, the default values apply.
scale_values (Union[List[int], int], optional) – number of right-bit-shifts needed for down-scaling the input signal (per channel). Defaults to [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5].
iaf_threshold_values (Union[List[int], int], optional) – the thresholds of the IAF neurons (quantized). Default to [1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024].
num_avg_bitshift (int) – number of bit shifts used in the low-pass filter implementation. Default to 4. The effective window length of the low-pass filter will be
2**num_avg_bitshift
SAH_period (int) – Sampling period that the signal is sampled and held, in number of timesteps. Defaults to 10.
sampling_freq (float) – Sampling frequency of the IMU interface. Default:
200.
- _abc_impl = <_abc._abc_data object>
- _auto_batch(data: ndarray, states: Tuple = (), target_shapes: Tuple | None = None) Tuple[ndarray, Tuple[ndarray]]
Automatically replicate states over batches and verify input dimensions
Examples
>>> data, (state0, state1, state2) = self._auto_batch(data, (self.state0, self.state1, self.state2))
This will verify that
data
has the correct final dimension (i.e.self.size_in
).If
data
has only two dimensions(T, Nin)
, then it will be augmented to(1, T, Nin)
. The individual states will be replicated out from shape(a, b, c, ...)
to(n_batches, a, b, c, ...)
and returned.If
data
has only a single dimension(T,)
, it will be expanded to(1, T, self.size_in)
.state0
,state1
,state2
will be replicated out along the batch dimension.>>> data, (state0,) = self._auto_batch(data, (self.state0,), ((10, -1, self.size_in),))
Attempt to replicate
state0
to a specified size(10, -1, self.size_in)
.- Parameters:
data (np.ndarray) – Input data tensor. Either
(batches, T, Nin)
or(T, Nin)
states (Tuple) – Tuple of state variables. Each will be replicated out over batches by prepending a batch dimension
target_shapes (Tuple) – A tuple of target size tuples, each corresponding to each state argument. The individual states will be replicated out to match the corresponding target sizes. If not provided (the default), then states will be only replicated along batches.
- Returns:
(np.ndarray, Tuple[np.ndarray]) data, states
- _force_set_attributes
(bool) If
True
, do not sanity-check attributes when setting.
- _get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict
Search for attributes of this module and submodules that match a given family
This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string:
"weights"
for weights;"taus"
for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six month’s time).- Parameters:
type_name (str) – The class of parameters to search for. Must be one of
["Parameter", "SimulationParameter", "State"]
or another future subclass ofParameterBase
family (Union[str, Tuple[str]]) – A string or list or tuple of strings, that define one or more attribute families to search for
- Returns:
A nested dictionary of attributes that match the provided
type_name
andfamily
- Return type:
dict
- _get_attribute_registry() Tuple[Dict, Dict]
Return or initialise the attribute registry for this module
- Returns:
registered_attributes, registered_modules
- Return type:
(tuple)
- _has_registered_attribute(name: str) bool
Check if the module has a registered attribute
- Parameters:
name (str) – The name of the attribute to check
- Returns:
True
if the attributename
is in the attribute registry,False
otherwise.- Return type:
bool
- _in_Module_init
(bool) If exists and
True
, indicates that the module is in the__init__
chain.
- _name: str | None
Name of this module, if assigned
- _register_attribute(name: str, val: ParameterBase)
Record an attribute in the attribute registry
- Parameters:
name (str) – The name of the attribute to register
val (ParameterBase) – The
ParameterBase
subclass object to register. e.g.Parameter
,SimulationParameter
orState
.
- _register_module(name: str, mod: ModuleBase)
Register a sub-module in the module registry
- Parameters:
name (str) – The name of the module to register
mod (ModuleBase) – The
ModuleBase
object to register
- _reset_attribute(name: str) ModuleBase
Reset an attribute to its initialisation value
- Parameters:
name (str) – The name of the attribute to reset
- Returns:
For compatibility with the functional API
- Return type:
self (
Module
)
- _shape
The shape of this module
- _spiking_input: bool
Whether this module receives spiking input
- _spiking_output: bool
Whether this module produces spiking output
- _submodulenames: List[str]
Registry of sub-module names
- _wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries]
Convert a recorded dictionary to a
TimeSeries
representationThis method is optional, and is provided to make the
timed()
conversion to aTimedModule
work better. You should override this method in your customModule
, to wrap each element of your recorded state dictionary as aTimeSeries
- Parameters:
state_dict (dict) – A recorded state dictionary as returned by
evolve()
t_start (float) – The initial time of the recorded state, to use as the starting point of the time series
- Returns:
The mapped recorded state dictionary, wrapped as
TimeSeries
objects- Return type:
Dict[str, TimeSeries]
- as_graph() GraphModuleBase
Convert this module to a computational graph
- Returns:
The computational graph corresponding to this module
- Return type:
- Raises:
NotImplementedError – If
as_graph()
is not implemented for this subclass
- attributes_named(name: Tuple[str] | List[str] | str) dict
Search for attributes of this or submodules by time
- Parameters:
name (Union[str, Tuple[str]) – The name of the attribute to search for
- Returns:
A nested dictionary of attributes that match
name
- Return type:
dict
- property class_name: str
Class name of
self
- Type:
str
- dt
(float) Time-step of the encoding simulation in seconds
- evolve(input_data: ndarray, record: bool = False) Tuple[ndarray, Dict[str, Any], Dict[str, Any]] [source]
Processes the input IMU signal sample-by-sample and generate spikes
- Parameters:
input_data (np.ndarray) – batched input data recorded from IMU sensor. It should be in integer format. (BxTx3)
record (bool, optional) – If True, the intermediate results are recorded and returned. Defaults to False.
- Returns:
output empty dictionary empty dictionary
- Return type:
Tuple[np.ndarray, Dict[str, Any], Dict[str, Any]]
- export_config() InputInterfaceConfig [source]
Export the current configuration of the IMUIF module
- Returns:
a samna object that encapsulates the hardware configuration such as register values
- Return type:
InputInterfaceConfig
- classmethod from_config(config: InputInterfaceConfig) IMUIFSim [source]
Obtain an instance of IMUIFSim from a samna configuration object
- Parameters:
config (InputInterfaceConfig) – a samna object that encapsulates the hardware configuration such as register values
- Raises:
TypeError – if the input is not the samna configuration object that is expected
- Returns:
an instance of IMUIFSim
- Return type:
- property full_name: str
The full name of this module (class plus module name)
- Type:
str
- model
The sequential module that simulates the IMU front-end
- modules() Dict
Return a dictionary of all sub-modules of this module
- Returns:
A dictionary containing all sub-modules. Each item will be named with the sub-module name.
- Return type:
dict
- property name: str
The name of this module, or an empty string if
None
- Type:
str
- parameters(family: Tuple | List | str | None = None) Dict
Return a nested dictionary of module and submodule Parameters
Use this method to inspect the Parameters from this and all submodules. The optional argument
family
allows you to search for Parameters in a particular family — for example"weights"
for all weights of this module and nested submodules.Although the
family
argument is an arbitrary string, reasonable choises are"weights"
,"taus"
for time constants,"biases"
for biases…Examples
Obtain a dictionary of all Parameters for this module (including submodules):
>>> mod.parameters() dict{ ... }
Obtain a dictionary of Parameters from a particular family:
>>> mod.parameters("weights") dict{ ... }
- Parameters:
family (str) – The family of Parameters to search for. Default:
None
; return all parameters.- Returns:
A nested dictionary of Parameters of this module and all submodules
- Return type:
dict
- reset_parameters()
Reset all parameters in this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- reset_state() ModuleBase
Reset the state of this module
- Returns:
The updated module is returned for compatibility with the functional API
- Return type:
- set_attributes(new_attributes: dict) ModuleBase
Set the attributes and sub-module attributes from a dictionary
This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.
Examples
Use the functional API to evolve, obtain new states, and set those states:
>>> _, new_state, _ = mod(input) >>> mod = mod.set_attributes(new_state)
Obtain a parameter dictionary, modify it, then set the parameters back:
>>> params = mod.parameters() >>> params['w_input'] *= 0. >>> mod.set_attributes(params)
- Parameters:
new_attributes (dict) – A nested dictionary containing parameters of this module and sub-modules.
- property shape: tuple
The shape of this module
- Type:
tuple
- simulation_parameters(family: Tuple | List | str | None = None) Dict
Return a nested dictionary of module and submodule SimulationParameters
Use this method to inspect the SimulationParameters from this and all submodules. The optional argument
family
allows you to search for SimulationParameters in a particular family.Examples
Obtain a dictionary of all SimulationParameters for this module (including submodules):
>>> mod.simulation_parameters() dict{ ... }
- Parameters:
family (str) – The family of SimulationParameters to search for. Default:
None
; return all SimulationParameter attributes.- Returns:
A nested dictionary of SimulationParameters of this module and all submodules
- Return type:
dict
- property size: int
(DEPRECATED) The output size of this module
- Type:
int
- property size_in: int
The input size of this module
- Type:
int
- property size_out: int
The output size of this module
- Type:
int
- property spiking_input: bool
If
True
, this module receives spiking input. IfFalse
, this module expects continuous input.- Type:
bool
- property spiking_output
If
True
, this module sends spiking output. IfFalse
, this module sends continuous output.- Type:
bool
- state(family: Tuple | List | str | None = None) Dict
Return a nested dictionary of module and submodule States
Use this method to inspect the States from this and all submodules. The optional argument
family
allows you to search for States in a particular family.Examples
Obtain a dictionary of all States for this module (including submodules):
>>> mod.state() dict{ ... }
- Parameters:
family (str) – The family of States to search for. Default:
None
; return all State attributes.- Returns:
A nested dictionary of States of this module and all submodules
- Return type:
dict
- timed(output_num: int = 0, dt: float | None = None, add_events: bool = False)
Convert this module to a
TimedModule
- Parameters:
output_num (int) – Specify which output of the module to take, if the module returns multiple output series. Default:
0
, take the first (or only) output.dt (float) – Used to provide a time-step for this module, if the module does not already have one. If
self
already defines a time-step, thenself.dt
will be used. Default:None
add_events (bool) – Iff
True
, theTimedModule
will add events occurring on a single timestep on input and output. Default:False
, don’t add time steps.
Returns:
TimedModule
: A timed module that wraps this module