devices.xylo.syns63300.IMUIFSim

class devices.xylo.syns63300.IMUIFSim(*args, **kwargs)[source]

Bases: Module

A Module that simulates the IMU signal preprocessing on Xylo IMU

This module simulates the Xylo IMU front-end stage. This is a signal-to-event core that consists of rotation removal units, low-pass filters, and a spike generator. The module takes in a 3D IMU signal and outputs a spike train.

See also

For example usage of the IMUIFSim Module, see ∿ The Xyloβ„’ IMU preprocessing interface

Attributes overview

class_name

Class name of self

full_name

The full name of this module (class plus module name)

name

The name of this module, or an empty string if None

shape

The shape of this module

size

(DEPRECATED) The output size of this module

size_in

The input size of this module

size_out

The output size of this module

spiking_input

If True, this module receives spiking input.

spiking_output

If True, this module sends spiking output.

model

The sequential module that simulates the IMU front-end

dt

(float) Time-step of the encoding simulation in seconds

Methods overview

__init__([shape,Β select_iaf_output,Β ...])

Object constructor

as_graph()

Convert this module to a computational graph

attributes_named(name)

Search for attributes of this or submodules by time

evolve(input_data[,Β record])

Processes the input IMU signal sample-by-sample and generate spikes

export_config()

Export the current configuration of the IMUIF module

from_config(config)

Obtain an instance of IMUIFSim from a samna configuration object

from_specification(*args,Β **kwargs)

modules()

Return a dictionary of all sub-modules of this module

parameters([family])

Return a nested dictionary of module and submodule Parameters

reset_parameters()

Reset all parameters in this module

reset_state()

Reset the state of this module

set_attributes(new_attributes)

Set the attributes and sub-module attributes from a dictionary

simulation_parameters([family])

Return a nested dictionary of module and submodule SimulationParameters

state([family])

Return a nested dictionary of module and submodule States

timed([output_num,Β dt,Β add_events])

Convert this module to a TimedModule

__init__(shape: Tuple | int | None = (3, 15), select_iaf_output: bool = False, bypass_jsvd: bool = False, filter_list: List[BandPassFilter] | None = None, scale_values: List[int] | int = 5, iaf_threshold_values: List[int] | int = 1024, num_avg_bitshift: int = 4, SAH_period: int = 10, sampling_freq: float = 200.0) None[source]

Object constructor

Parameters:
  • shape (Optional[Union[Tuple, int]], optional) – the shape of the input-output transformation. Defaults to (3, 15).

  • select_iaf_output (bool, optional) – If true, the output of the module is encoded using IAF spike encoding. If false, the output of the module is encoded using scale spike encoding. Defaults to False.

  • bypass_jsvd (bool, optional) – If true, the module does not perform the rotation removal stage. Defaults to False.

  • filter_list (Optional[List[BandPassFilter]], optional) – the list of filters of the filterbank. Note that first 5 filters will apply to the first input channel, the second 5 filters apply to the second input channel, and the last 5 filters will apply to the 3rd input channel. Defaults to None, when it’s None, the default values apply.

  • scale_values (Union[List[int], int], optional) – number of right-bit-shifts needed for down-scaling the input signal (per channel). Defaults to [5,5,5,5,5,5,5,5,5,5,5,5,5,5,5].

  • iaf_threshold_values (Union[List[int], int], optional) – the thresholds of the IAF neurons (quantized). Default to [1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024,1024].

  • num_avg_bitshift (int) – number of bit shifts used in the low-pass filter implementation. Default to 4. The effective window length of the low-pass filter will be 2**num_avg_bitshift

  • SAH_period (int) – Sampling period that the signal is sampled and held, in number of timesteps. Defaults to 10.

  • sampling_freq (float) – Sampling frequency of the IMU interface. Default: 200.

_abc_impl = <_abc._abc_data object>
_auto_batch(data: ndarray, states: Tuple = (), target_shapes: Tuple | None = None) Tuple[ndarray, Tuple[ndarray]]

Automatically replicate states over batches and verify input dimensions

Examples

>>> data, (state0, state1, state2) = self._auto_batch(data, (self.state0, self.state1, self.state2))

This will verify that data has the correct final dimension (i.e. self.size_in).

If data has only two dimensions (T, Nin), then it will be augmented to (1, T, Nin). The individual states will be replicated out from shape (a, b, c, ...) to (n_batches, a, b, c, ...) and returned.

If data has only a single dimension (T,), it will be expanded to (1, T, self.size_in).

state0, state1, state2 will be replicated out along the batch dimension.

>>> data, (state0,) = self._auto_batch(data, (self.state0,), ((10, -1, self.size_in),))

Attempt to replicate state0 to a specified size (10, -1, self.size_in).

Parameters:
  • data (np.ndarray) – Input data tensor. Either (batches, T, Nin) or (T, Nin)

  • states (Tuple) – Tuple of state variables. Each will be replicated out over batches by prepending a batch dimension

  • target_shapes (Tuple) – A tuple of target size tuples, each corresponding to each state argument. The individual states will be replicated out to match the corresponding target sizes. If not provided (the default), then states will be only replicated along batches.

Returns:

(np.ndarray, Tuple[np.ndarray]) data, states

_force_set_attributes

(bool) If True, do not sanity-check attributes when setting.

_get_attribute_family(type_name: str, family: Tuple | List | str | None = None) dict

Search for attributes of this module and submodules that match a given family

This method can be used to conveniently get all weights for a network; or all time constants; or any other family of parameters. Parameter families are defined simply by a string: "weights" for weights; "taus" for time constants, etc. These strings are arbitrary, but if you follow the conventions then future developers will thank you (that includes you in six month’s time).

Parameters:
  • type_name (str) – The class of parameters to search for. Must be one of ["Parameter", "SimulationParameter", "State"] or another future subclass of ParameterBase

  • family (Union[str, Tuple[str]]) – A string or list or tuple of strings, that define one or more attribute families to search for

Returns:

A nested dictionary of attributes that match the provided type_name and family

Return type:

dict

_get_attribute_registry() Tuple[Dict, Dict]

Return or initialise the attribute registry for this module

Returns:

registered_attributes, registered_modules

Return type:

(tuple)

_has_registered_attribute(name: str) bool

Check if the module has a registered attribute

Parameters:

name (str) – The name of the attribute to check

Returns:

True if the attribute name is in the attribute registry, False otherwise.

Return type:

bool

_in_Module_init

(bool) If exists and True, indicates that the module is in the __init__ chain.

_name: str | None

Name of this module, if assigned

_register_attribute(name: str, val: ParameterBase)

Record an attribute in the attribute registry

Parameters:
  • name (str) – The name of the attribute to register

  • val (ParameterBase) – The ParameterBase subclass object to register. e.g. Parameter, SimulationParameter or State.

_register_module(name: str, mod: ModuleBase)

Register a sub-module in the module registry

Parameters:
  • name (str) – The name of the module to register

  • mod (ModuleBase) – The ModuleBase object to register

_reset_attribute(name: str) ModuleBase

Reset an attribute to its initialisation value

Parameters:

name (str) – The name of the attribute to reset

Returns:

For compatibility with the functional API

Return type:

self (Module)

_shape

The shape of this module

_spiking_input: bool

Whether this module receives spiking input

_spiking_output: bool

Whether this module produces spiking output

_submodulenames: List[str]

Registry of sub-module names

_wrap_recorded_state(recorded_dict: dict, t_start: float) Dict[str, TimeSeries]

Convert a recorded dictionary to a TimeSeries representation

This method is optional, and is provided to make the timed() conversion to a TimedModule work better. You should override this method in your custom Module, to wrap each element of your recorded state dictionary as a TimeSeries

Parameters:
  • state_dict (dict) – A recorded state dictionary as returned by evolve()

  • t_start (float) – The initial time of the recorded state, to use as the starting point of the time series

Returns:

The mapped recorded state dictionary, wrapped as TimeSeries objects

Return type:

Dict[str, TimeSeries]

as_graph() GraphModuleBase

Convert this module to a computational graph

Returns:

The computational graph corresponding to this module

Return type:

GraphModuleBase

Raises:

NotImplementedError – If as_graph() is not implemented for this subclass

attributes_named(name: Tuple[str] | List[str] | str) dict

Search for attributes of this or submodules by time

Parameters:

name (Union[str, Tuple[str]) – The name of the attribute to search for

Returns:

A nested dictionary of attributes that match name

Return type:

dict

property class_name: str

Class name of self

Type:

str

dt

(float) Time-step of the encoding simulation in seconds

evolve(input_data: ndarray, record: bool = False) Tuple[ndarray, Dict[str, Any], Dict[str, Any]][source]

Processes the input IMU signal sample-by-sample and generate spikes

Parameters:
  • input_data (np.ndarray) – batched input data recorded from IMU sensor. It should be in integer format. (BxTx3)

  • record (bool, optional) – If True, the intermediate results are recorded and returned. Defaults to False.

Returns:

output empty dictionary empty dictionary

Return type:

Tuple[np.ndarray, Dict[str, Any], Dict[str, Any]]

export_config() InputInterfaceConfig[source]

Export the current configuration of the IMUIF module

Returns:

a samna object that encapsulates the hardware configuration such as register values

Return type:

InputInterfaceConfig

classmethod from_config(config: InputInterfaceConfig) IMUIFSim[source]

Obtain an instance of IMUIFSim from a samna configuration object

Parameters:

config (InputInterfaceConfig) – a samna object that encapsulates the hardware configuration such as register values

Raises:

TypeError – if the input is not the samna configuration object that is expected

Returns:

an instance of IMUIFSim

Return type:

IMUIFSim

classmethod from_specification(*args, **kwargs) IMUIFSim[source]
property full_name: str

The full name of this module (class plus module name)

Type:

str

model

The sequential module that simulates the IMU front-end

modules() Dict

Return a dictionary of all sub-modules of this module

Returns:

A dictionary containing all sub-modules. Each item will be named with the sub-module name.

Return type:

dict

property name: str

The name of this module, or an empty string if None

Type:

str

parameters(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule Parameters

Use this method to inspect the Parameters from this and all submodules. The optional argument family allows you to search for Parameters in a particular family β€” for example "weights" for all weights of this module and nested submodules.

Although the family argument is an arbitrary string, reasonable choises are "weights", "taus" for time constants, "biases" for biases…

Examples

Obtain a dictionary of all Parameters for this module (including submodules):

>>> mod.parameters()
dict{ ... }

Obtain a dictionary of Parameters from a particular family:

>>> mod.parameters("weights")
dict{ ... }
Parameters:

family (str) – The family of Parameters to search for. Default: None; return all parameters.

Returns:

A nested dictionary of Parameters of this module and all submodules

Return type:

dict

reset_parameters()

Reset all parameters in this module

Returns:

The updated module is returned for compatibility with the functional API

Return type:

Module

reset_state() ModuleBase

Reset the state of this module

Returns:

The updated module is returned for compatibility with the functional API

Return type:

Module

set_attributes(new_attributes: dict) ModuleBase

Set the attributes and sub-module attributes from a dictionary

This method can be used with the dictionary returned from module evolution to set the new state of the module. It can also be used to set multiple parameters of a module and submodules.

Examples

Use the functional API to evolve, obtain new states, and set those states:

>>> _, new_state, _ = mod(input)
>>> mod = mod.set_attributes(new_state)

Obtain a parameter dictionary, modify it, then set the parameters back:

>>> params = mod.parameters()
>>> params['w_input'] *= 0.
>>> mod.set_attributes(params)
Parameters:

new_attributes (dict) – A nested dictionary containing parameters of this module and sub-modules.

property shape: tuple

The shape of this module

Type:

tuple

simulation_parameters(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule SimulationParameters

Use this method to inspect the SimulationParameters from this and all submodules. The optional argument family allows you to search for SimulationParameters in a particular family.

Examples

Obtain a dictionary of all SimulationParameters for this module (including submodules):

>>> mod.simulation_parameters()
dict{ ... }
Parameters:

family (str) – The family of SimulationParameters to search for. Default: None; return all SimulationParameter attributes.

Returns:

A nested dictionary of SimulationParameters of this module and all submodules

Return type:

dict

property size: int

(DEPRECATED) The output size of this module

Type:

int

property size_in: int

The input size of this module

Type:

int

property size_out: int

The output size of this module

Type:

int

property spiking_input: bool

If True, this module receives spiking input. If False, this module expects continuous input.

Type:

bool

property spiking_output

If True, this module sends spiking output. If False, this module sends continuous output.

Type:

bool

state(family: Tuple | List | str | None = None) Dict

Return a nested dictionary of module and submodule States

Use this method to inspect the States from this and all submodules. The optional argument family allows you to search for States in a particular family.

Examples

Obtain a dictionary of all States for this module (including submodules):

>>> mod.state()
dict{ ... }
Parameters:

family (str) – The family of States to search for. Default: None; return all State attributes.

Returns:

A nested dictionary of States of this module and all submodules

Return type:

dict

timed(output_num: int = 0, dt: float | None = None, add_events: bool = False)

Convert this module to a TimedModule

Parameters:
  • output_num (int) – Specify which output of the module to take, if the module returns multiple output series. Default: 0, take the first (or only) output.

  • dt (float) – Used to provide a time-step for this module, if the module does not already have one. If self already defines a time-step, then self.dt will be used. Default: None

  • add_events (bool) – Iff True, the TimedModule will add events occurring on a single timestep on input and output. Default: False, don’t add time steps.

Returns: TimedModule: A timed module that wraps this module