"""
Implements :py:class:`.XyloSamna`, for running inference on a Xylo™Audio 3 HDK
Also provides :py:func:`.config_from_specification`.
"""
import numpy as np
import time
import copy
from typing import Optional, Union, List, Tuple
from warnings import warn
try:
from tqdm.autonotebook import tqdm
except:
tqdm = lambda x: x
import samna
from samna.xyloAudio3.configuration import XyloConfiguration
from rockpool.nn.modules.module import Module
from rockpool.parameters import SimulationParameter
from . import xa3_devkit_utils as hdkutils
XyloAudio3HDK = samna.xyloAudio3.XyloAudio3TestBoard
# - Configure exports
__all__ = [
"config_from_specification",
"save_config",
"load_config",
"XyloSamna",
]
[docs]def config_from_specification(
weights_in: np.ndarray,
weights_out: np.ndarray,
weights_rec: Optional[np.ndarray] = None,
dash_mem: Optional[np.ndarray] = None,
dash_mem_out: Optional[np.ndarray] = None,
dash_syn: Optional[np.ndarray] = None,
dash_syn_out: Optional[np.ndarray] = None,
threshold: Optional[np.ndarray] = None,
threshold_out: Optional[np.ndarray] = None,
bias_hidden: Optional[np.ndarray] = None,
bias_out: Optional[np.ndarray] = None,
weight_shift_in: int = 0,
weight_shift_rec: int = 0,
weight_shift_out: int = 0,
aliases: Optional[List[List[int]]] = None,
*args,
**kwargs,
) -> XyloConfiguration:
"""
Convert a full network specification to a XyloAudio3 config and validate it
See Also:
For detailed information about the networks supported on Xylo, see :ref:`/devices/xylo-overview.ipynb`
Args:
weights_in (np.ndarray): A quantised 8-bit input weight matrix ``(Nin, Nin_res, 1)``. The third dimension specifies connections onto the second input synapse for each neuron. ``Nin_res`` indicates the number of hidden-layer neurons that receive input from the input channels.
weights_out (np.ndarray): A quantised 8-bit output weight matrix ``(Nhidden, Nout)``.
weights_rec (np.ndarray): A quantised 8-bit recurrent weight matrix ``(Nhidden, Nhidden, 1)``. The third dimension specified connections onto the second input synapse for each neuron. Default: ``0``
dash_mem (np.ndarray): A vector or list ``(Nhidden,)`` specifing decay bitshift for neuron state for each hidden layer neuron. Default: ``1``
dash_mem_out (np.ndarray): A vector or list ``(Nout,)`` specifing decay bitshift for neuron state for each output neuron. Default: ``1``
dash_syn (np.ndarray): A vector or list ``(Nhidden,)`` specifing decay bitshift for synapse 1 state for each hidden layer neuron. Default: ``1``
dash_syn_out (np.ndarray): A vector or list ``(Nout,)`` specifing decay bitshift for synapse state for each output layer neuron. Default: ``1``
threshold (np.ndarray): A vector or list ``(Nhidden,)`` specifing the firing threshold for each hidden layer neuron. Default: ``0``
threshold_out (np.ndarray): A vector or list ``(Nout,)`` specifing the firing threshold for each output layer neuron. Default: ``0``
bias_hidden (np.ndarray): A vector or list ``(Nhidden,)`` specifing the bias for each hidden layer neuron. Default: ``0``
bias_out (np.ndarray): A vector or list ``(Nout,)`` specifing the bias for each output layer neuron. Default: ``0``
weight_shift_in (int): The number of bits to left-shift each input weight. Default: ``0``
weight_shift_rec (int): The number of bits to left-shift each recurrent weight. Default: ``0``
weight_shift_out (int): The number of bits to left-shift each output layer weight. Default: ``0``
aliases (Optional[List[List[int]]]): For each neuron in the hidden population, a list containing the alias targets for that neuron
Returns: (:py:class:`.samna.xyloAudio3.XyloConfiguration`, bool, str): config, is_valid, message
``config`` will be a `XyloConfiguration`.
``is_valid`` will be a boolean flag ``True`` iff the configuration is valid.
``message`` will be an empty string if the configuration is valid, or a message indicating why the configuration is invalid.
"""
# - Check input weights
if weights_in.ndim != 3:
raise ValueError(
f"Input weights must be 3 dimensional `(Nin, Nin_res, Nsyn)`. Found {weights_in.shape}"
)
if weights_rec.ndim != 3:
raise ValueError(
f"Recurrent weights must be 3 dimensional `(Nin_res, Nin_res, Nsyn)`. Found {weights_rec.shape}"
)
# - Check output weights
if weights_out.ndim != 2:
raise ValueError("Output weights must be 2 dimensional `(Nhidden, Nout)`")
# - Get network shape
_, Nin_res, Nsyn = weights_in.shape
Nhidden, _, _ = weights_rec.shape
_, Nout = weights_out.shape
# - Check number of input synapses
if Nsyn > 2:
raise ValueError(
f"Max of 2 input synapses are supported on XyloAudio 3. Found {Nsyn}."
)
# - Check input and hidden weight sizes
if Nin_res > Nhidden:
raise ValueError("Input weight dimension `Nin_res` must be <= `Nhidden`")
# - Provide default `weights_rec`
weights_rec = (
np.zeros((Nhidden, Nhidden, 1), "int") if weights_rec is None else weights_rec
)
# - Check `weights_rec`
if weights_rec.ndim != 3 or weights_rec.shape[0] != weights_rec.shape[1]:
raise ValueError(
"Recurrent weights must be of shape `(Nhidden, Nhidden, Nsyn)`"
)
# - Check aliases
if aliases is not None and len(aliases) != Nhidden:
raise ValueError(
f"Aliases list must have `Nhidden` entries (`Nhidden` = {Nhidden})"
)
# - Check bitshift TCs, assign defaults
dash_mem = np.ones(Nhidden, "int") if dash_mem is None else np.array(dash_mem)
dash_syn = np.ones(Nhidden, "int") if dash_syn is None else np.array(dash_syn)
if bias_hidden is not None:
bias_hidden = np.round(np.array(bias_hidden)).astype("int")
if bias_out is not None:
bias_out = np.round(np.array(bias_out)).astype("int")
if np.size(dash_mem) != Nhidden or np.size(dash_syn) != Nhidden:
raise ValueError(
f"`dash_mem`, `dash_syn` need `Nhidden` entries (`Nhidden` = {Nhidden})"
+ f" found {np.size(dash_mem)}, {np.size(dash_syn)}"
)
dash_mem_out = (
np.ones(Nout, "int") if dash_mem_out is None else np.array(dash_mem_out)
)
dash_syn_out = (
np.ones(Nout, "int") if dash_syn_out is None else np.array(dash_syn_out)
)
if np.size(dash_mem_out) != Nout or np.size(dash_syn_out) != Nout:
raise ValueError(
f"`dash_mem_out` and `dash_syn_out` need `Nout` entries (`Nout` = {Nout})"
)
# - Check thresholds, assign defaults
threshold = np.zeros(Nhidden, "int") if threshold is None else np.array(threshold)
threshold_out = (
np.zeros(Nout, "int") if threshold_out is None else np.array(threshold_out)
)
if threshold.size != Nhidden:
raise ValueError(
f"`thresholds` needs `Nhidden` entries (`Nhidden` = {Nhidden})"
)
if threshold_out.size != Nout:
raise ValueError(f"`thresholds_out` needs `Nout` entries (`Nout` = {Nout})")
# - Check data types
if (
weights_in.dtype.kind not in "ui"
or weights_rec.dtype.kind not in "ui"
or weights_out.dtype.kind not in "ui"
):
warn(
"`weights...` arguments should be provided as `int` data types. I am rounding and casting these to `int`."
)
if (
threshold.dtype.kind not in "ui"
or dash_syn.dtype.kind not in "ui"
or dash_syn_out.dtype.kind not in "ui"
or dash_mem.dtype.kind not in "ui"
or dash_mem_out.dtype.kind not in "ui"
):
warn(
"Neuron and synapse parameter arguments should be provided as `int` data types. I am rounding and casting these to `int`."
)
# - Round and cast all parameters to integer
weights_in = np.round(weights_in).astype("int8")
weights_out = np.round(weights_out).astype("int8")
weights_rec = np.round(weights_rec).astype("int8")
dash_mem = np.round(dash_mem).astype("int8")
dash_mem_out = np.round(dash_mem_out).astype("int8")
dash_syn = np.round(dash_syn).astype("int8")
dash_syn_out = np.round(dash_syn_out).astype("int8")
threshold = np.round(threshold).astype("int")
threshold_out = np.round(threshold_out).astype("int")
weight_shift_in = np.round(weight_shift_in).astype("int8")
weight_shift_rec = np.round(weight_shift_rec).astype("int8")
weight_shift_out = np.round(weight_shift_out).astype("int8")
if aliases is not None:
aliases = [np.round(a).astype("int") for a in aliases]
# - Build the configuration
config = samna.xyloAudio3.configuration.XyloConfiguration()
if bias_hidden is not None or bias_out is not None:
config.bias_enable = True
config.hidden.aliasing = aliases is not None
config.input.weight_bit_shift = weight_shift_in
config.hidden.weight_bit_shift = weight_shift_rec
config.readout.weight_bit_shift = weight_shift_out
if weights_in.shape[1] > 128:
warn(
"More than 128 input expansion neurons (IEN) detected. Only the first 128 will be used."
)
config.input.weights = weights_in[:, :128, 0]
else:
config.input.weights = weights_in[:, :, 0]
config.hidden.weights = weights_rec[:, :, 0]
if weights_out.shape[0] > 128:
warn(
"More than 128 output expansion neurons (OEN) detected. Only the last 128 will be used."
)
config.readout.weights = weights_out[-128:, :]
else:
config.readout.weights = weights_out
hidden_neurons = []
for i in range(len(weights_rec)):
neuron = samna.xyloAudio3.configuration.HiddenNeuron()
if aliases is not None and len(aliases[i]) > 0:
neuron.alias_target = aliases[i][0]
neuron.i_syn_decay = dash_syn[i]
neuron.v_mem_decay = dash_mem[i]
neuron.threshold = threshold[i]
if bias_hidden is not None:
neuron.v_mem_bias = bias_hidden[i]
hidden_neurons.append(neuron)
config.hidden.neurons = hidden_neurons
readout_neurons = []
for i in range(np.shape(weights_out)[1]):
neuron = samna.xyloAudio3.configuration.OutputNeuron()
neuron.i_syn_decay = dash_syn_out[i]
neuron.v_mem_decay = dash_mem_out[i]
neuron.threshold = threshold_out[i]
if bias_out is not None:
neuron.v_mem_bias = bias_out[i]
readout_neurons.append(neuron)
config.readout.neurons = readout_neurons
# - Validate the configuration and return
is_valid, message = samna.xyloAudio3.validate_configuration(config)
return config, is_valid, message
def save_config(config: XyloConfiguration, filename: str) -> None:
"""
Save a Xylo configuration to disk in JSON format
Args:
config (XyloConfiguration): The configuration to write
filename (str): The filename to write to
"""
with open(filename, "w") as f:
f.write(config.to_json())
def load_config(filename: str) -> XyloConfiguration:
"""
Read a Xylo configuration from disk in JSON format
Args:
filename (str): The filename to read from
Returns:
`.XyloConfiguration`: The configuration loaded from disk
"""
# - Create a new config object
conf = XyloConfiguration()
# - Read the configuration from file
with open(filename) as f:
conf.from_json(f.read())
# - Return the configuration
return conf
[docs]class XyloSamna(Module):
"""
A spiking neuron :py:class:`.Module` backed by the XyloAudio 3 hardware, via `samna`.
Use :py:func:`.config_from_specification` to build and validate a configuration for Xylo.
See Also:
See the tutorial :ref:`/devices/xylo-a3/xylo-audio3-intro.ipynb` for a high-level overview of building and deploying networks for Xylo.
"""
[docs] def __init__(
self,
device: XyloAudio3HDK,
config: XyloConfiguration = None,
dt: float = 1e-3,
output_mode: str = "Spike",
power_frequency: Optional[float] = 100,
*args,
**kwargs,
):
"""
Instantiate a Module with XyloAudio 3 dev-kit backend.
Args:
device (XyloAudio3HDK): An opened ``samna`` device to a XyloAudio 3 dev kit.
config (XyloConfiguration): A Xylo configuration from ``samna``.
dt (float): The time-step for this simulation, in seconds. Default: ``1e-3``, 1 ms.
output_mode (str): The readout mode for the Xylo device. This must be one of ``["Spike", "Isyn", "Vmem"]``. Default: "Spike", return events from the output layer.
power_frequency (float): The frequency of power measurement, in Hz. Default: 100 Hz.
Raises:
`ValueError`: If ``device`` is not set. ``device`` must be a ``XyloAudio3HDK``.
`ValueError`: If ``output_mode`` is not ``Spike``, ``Vmem`` or ``ISyn``.
`Warning`: For XyloSamna ``config.input_source`` has to be set to ``SpikeEvents``.
"""
# - Check input arguments
if device is None:
raise ValueError("`device` must be a valid, opened Xylo HDK device.")
# - Check output mode specification
if output_mode not in ["Spike", "Vmem", "Isyn"]:
raise ValueError(
f'{output_mode} is not supported. Must be one of `["Spike", "Vmem", "Isyn"]`.'
)
self._output_mode = output_mode
# - Get a default configuration
if config is None:
config = samna.xyloAudio3.configuration.XyloConfiguration()
# - Set input source to SpikeEvents
if config.input_source != samna.xyloAudio3.InputSource.SpikeEvents:
warn(
"`XyloSamna` is intended to be used with direct input to the SNN core. Updating `config.input_source` to SpikeEvents."
)
config.input_source = samna.xyloAudio3.InputSource.SpikeEvents
# - Set operation mode to AcceleratedTime in XyloSamna
config.operation_mode = samna.xyloAudio3.OperationMode.AcceleratedTime
# - Get the network shape
Nin, _ = np.shape(config.input.weights)
Nhidden, _ = np.shape(config.hidden.weights)
_, Nout = np.shape(config.readout.weights)
# - Initialise the superclass
super().__init__(
shape=(Nin, Nhidden, Nout),
spiking_input=True,
spiking_output=True,
*args,
**kwargs,
)
# - Store the device
self._device: XyloAudio3HDK = device
""" `.XyloHDK`: The Xylo HDK used by this module """
# - Register buffer to read and write events
self._read_buffer = hdkutils.new_xylo_read_buffer(device)
""" `.XyloAudio3ReadBuffer`: The read buffer for the connected HDK """
self._write_buffer = hdkutils.new_xylo_write_buffer(device)
""" `.XyloAudio3WriteBuffer`: The write buffer for the connected HDK """
# - Register buffers to monitor readout events
(
self._readout_buffer,
self._readout_graph,
) = hdkutils.new_xylo_state_monitor_buffer(device)
""" `.XyloAudio3ReadBuffer`: The read buffer with integrated filter to collect readout events for the connected HDK """
# - Sleep time post sending spikes on each time-step, in manual mode
self._sleep_time = 0e-3
""" float: Post-stimulation sleep time in seconds """
# - Store timestep
self.dt = dt
""" float: Simulation time-step in seconds """
# - Apply configuration
self._config: Union[
XyloConfiguration, SimulationParameter
] = SimulationParameter(shape=(), init_func=lambda _: config)
# - Keep a registry of the current recording mode, to save unnecessary reconfiguration
self._last_record_mode: Optional[bool] = None
""" bool: The most recent (and assumed still valid) recording mode """
# - Store the power frequency
self._power_frequency = power_frequency
""" float: Frequency of power monitoring, in Hz """
# - Set power measurement module
(
self._power_buf,
self._power_monitor,
self._stopwatch,
) = hdkutils.set_power_measurement(self._device, self._power_frequency)
# - Apply configuration on the board
hdkutils.apply_configuration(self._device, self._config)
def __del__(self):
# - Stop the readout graph buffer
if self._readout_graph:
self._readout_graph.stop()
if self._power_monitor:
self._power_monitor.stop_auto_power_measurement()
if self._stopwatch:
self._stopwatch.stop()
# - Reset the HDK to clean up
self._device.reset_board_soft()
@property
def config(self):
"""`.XyloConfiguration`: The HDK configuration applied to the Xylo module"""
# - Return the configuration stored on Xylo HDK
return self._device.get_model().get_configuration()
@config.setter
def config(self, new_config):
"""`.XyloConfiguration`: The HDK configuration applied to the Xylo module"""
# - Test for a valid configuration
is_valid, msg = samna.xyloAudio3.validate_configuration(new_config)
if not is_valid:
raise ValueError(f"Invalid configuration for the Xylo HDK: {msg}")
# - Write the configuration to the device
hdkutils.apply_configuration(self._device, new_config)
time.sleep(self._sleep_time)
self._config = new_config
[docs] def reset_state(self) -> "XyloSamna":
"""
Reset all states on the Xylo device
"""
# - Reset neuron and synapse state on Xylo
# TODO FIXME - https://www.wrike.com/open.htm?id=1533940426 - reset state is not working
warn("Reset state is not working yet.")
return self
[docs] def evolve(
self,
input: np.ndarray,
record: bool = False,
record_power: bool = False,
read_timeout: Optional[float] = None,
*args,
**kwargs,
) -> Tuple[np.ndarray, dict, dict]:
"""
Evolve a network on the XyloAudio 3 HDK in accelerated-time mode
Sends a series of events to the Xylo HDK, evolves the network over the input events, and returns the output events produced during the input period. Optionally record internal state of the network, selectable with the ``record`` flag.
Args:
input (np.ndarray): A raster ``(T, Nin)`` specifying for each bin the number of input events sent to the corresponding input channel on Xylo, at the corresponding time point. Up to 15 input events can be sent per bin.
record (bool): Record and return all internal states of the neurons and synapses on Xylo. Default: ``False``, do not record internal state.
record_power (bool): Iff ``True``, record the power consumption during each evolve.
read_timeout (Optional[float]): Set an explicit read timeout for the entire simulation time. This should be sufficient for the simulation to complete, and for data to be returned. Default: ``None``, set a reasonable default timeout.
Returns:
(np.ndarray, dict, dict): ``output``, ``new_state``, ``rec_dict``.
``output`` is a raster ``(T, Nout)``, containing events for each channel in each time bin. Time bins in ``output`` correspond to the time bins in ``input``.
``new_state`` is an empty dictionary. The Xylo HDK does not permit querying or setting state.
``rec_dict`` is a dictionary containing recorded internal state of Xylo during evolution, if the ``record`` argument is ``True``. Otherwise this is an empty dictionary.
Raises:
`TimeoutError`: If reading data times out during the evolution. An explicity timeout can be set using the `read_timeout` argument.
"""
# - Get the network size
Nin, Nhidden, Nout = self.shape[:]
Nhidden_monitor = Nhidden if record else 0
Nout_monitor = Nout if record or self._output_mode == "Isyn" else 0
# - Impose accelerated mode
# -- Configure operation mode and recording
self._configure_accel_time_mode(Nhidden, Nout, record)
# - Get input shape
input, _ = self._auto_batch(input)
_, timestep_count, _ = input.shape
# - Get current timestep
start_timestep = hdkutils.get_current_timestep(
self._readout_buffer, self._write_buffer
)
final_timestep = start_timestep + timestep_count - 1
# -- Encode input events
input_events_list = []
# - Locate input events
spikes = np.argwhere(input)
counts = input[np.nonzero(input)]
# - Generate input events
for timestep, channel, count in zip(spikes[:, 1], spikes[:, 2], counts):
for _ in range(int(count)):
event = samna.xyloAudio3.event.Spike()
event.neuron_id = channel
event.timestep = start_timestep + timestep
input_events_list.append(event)
# - Add a `TriggerProcessing` event to ensure all time-steps are processed
event = samna.xyloAudio3.event.TriggerProcessing(
target_timestep=final_timestep + 1
)
input_events_list.append(event)
# - Clear the read and state buffers
self._read_buffer.get_events()
self._readout_buffer.get_events()
# - Clear the power recording buffer, if recording power
if record_power:
self._power_buf.clear_events()
# - Determine a reasonable read timeout
if read_timeout is None:
read_timeout = timestep_count * Nhidden / 100.0
read_timeout = read_timeout * 100.0 if record else read_timeout
read_timeout = int(read_timeout)
# - Write the events and trigger the simulation
self._write_buffer.write(input_events_list)
# - Wait until the simulation is finished
# - Read output events from Xylo HDK
start_time = time.time()
readout_events, is_timeout = hdkutils.blocking_read(
self._readout_buffer,
timeout=max(read_timeout, 1.0),
target_timestep=final_timestep,
)
inf_duration = time.time() - start_time
# - Handle a timeout error
if is_timeout:
message = f"Processing didn't finish for {read_timeout}s. Read {len(readout_events)} events"
r_events = [e for e in readout_events if hasattr(e, "timestep")]
if len(readout_events) > 0:
message += f", first timestep: {r_events[0].timestep}, final timestep: {readout_events[-1].timestep}"
message += f", target timestep: {final_timestep}."
raise TimeoutError(message)
# - Read the simulation output data
xylo_data = hdkutils.decode_accel_mode_data(
readout_events,
Nin,
Nhidden_monitor,
Nout_monitor,
Nout,
start_timestep,
final_timestep,
)
if record:
# - Build a recorded state dictionary
rec_dict = {
"Vmem": np.array(xylo_data.V_mem_hid),
"Isyn": np.array(xylo_data.I_syn_hid),
"Isyn2": np.array(xylo_data.I_syn2_hid),
"Spikes": np.array(xylo_data.Spikes_hid),
"Vmem_out": np.array(xylo_data.V_mem_out),
"Isyn_out": np.array(xylo_data.I_syn_out),
"times": np.arange(start_timestep, final_timestep + 1) * self.dt,
"inf_duration": inf_duration,
}
else:
rec_dict = {}
if record_power:
# - Get all recent power events from the power measurement
ps = self._power_buf.get_events()
# - Separate out power meaurement events by channel
channels = samna.xyloAudio3.MeasurementChannels
io_power = np.array([e.value for e in ps if e.channel == int(channels.Io)])
analog_power = np.array(
[e.value for e in ps if e.channel == int(channels.AnalogLogic)]
)
digital_power = np.array(
[e.value for e in ps if e.channel == int(channels.DigitalLogic)]
)
rec_dict.update(
{
"io_power": io_power,
"analog_power": analog_power,
"digital_power": digital_power,
"inf_duration": inf_duration,
}
)
# - This module holds no state
new_state = {}
# - Return spike output, new state and record dictionary
if self._output_mode == "Spike":
return xylo_data.Spikes_out, new_state, rec_dict
elif self._output_mode == "Isyn":
return xylo_data.I_syn_out, new_state, rec_dict
elif self._output_mode == "Vmem":
return xylo_data.V_mem_out, new_state, rec_dict
[docs] def _evolve_manual(
self,
input: np.ndarray,
record: bool = False,
record_power: bool = False,
read_timeout: Optional[float] = 5.0,
*args,
**kwargs,
) -> Tuple[np.ndarray, dict, dict]:
"""
Evolve a network on the XyloAudio 3 HDK in single-step manual mode. For debug purposes only. Uses 'samna.xylo.OperationMode.Manual' in samna.
Sends a series of events to the Xylo HDK, evolves the network over the input events, and returns the output events produced during the input period.
Args:
input (np.ndarray): A raster ``(T, Nin)`` specifying for each bin the number of input events sent to the corresponding input channel on Xylo, at the corresponding time point. Up to 15 input events can be sent per bin.
record (bool): Record and return all internal states of the neurons and synapses on Xylo. Default: ``False``, do not record internal state.
record_power (bool): Iff ``True``, record the power consumption during each evolve.
read_timeout (Optional[float]): Set an explicit read timeout for the entire simulation time. This should be sufficient for the simulation to complete, and for data to be returned. Default: ``None``, set a reasonable default timeout.
Returns:
(np.ndarray, dict, dict): ``output``, ``new_state``, ``record_dict``.
``output`` is a raster ``(T, Nout)``, containing events for each channel in each time bin. Time bins in ``output`` correspond to the time bins in ``input``.
``new_state`` is an empty dictionary. The Xylo HDK does not permit querying or setting state.
``record_dict`` is a dictionary containing recorded internal state of Xylo during evolution, if the ``record`` argument is ``True``. It also contains power measurement recordings if ``record_power`` is ``True``. Otherwise this is an empty dictionary.
Raises:
`TimeoutError`: If reading data times out during the evolution. An explicity timeout can be set using the `read_timeout` argument.
"""
# - Get some information about the network size
Nin, Nhidden, Nout = self.shape
# - Impose manual operation mode
self._config.operation_mode = samna.xyloAudio3.OperationMode.Manual
# - Evolve one time-step on Xylo
hdkutils.advance_time_step(self._write_buffer)
# - Clear the read buffers
self._read_buffer.get_events()
# - Wait until xylo is ready
t_start = time.time()
while not hdkutils.is_xylo_ready(self._read_buffer, self._write_buffer):
if time.time() - t_start > read_timeout:
raise TimeoutError("Timed out waiting for Xylo to be ready.")
# - Get current timestamp
start_timestep = hdkutils.get_current_timestep(
self._read_buffer, self._write_buffer
)
final_timestep = start_timestep + len(input) - 1
# - Reset input spike registers
hdkutils.reset_input_spikes(self._write_buffer)
# - Clear the power recording buffer, if recording power
if record_power:
self._power_buf.clear_events()
# - Initialise lists for recording state
vmem_ts = []
isyn_ts = []
isyn2_ts = []
vmem_out_ts = []
isyn_out_ts = []
spikes_ts = []
output_ts = []
# - Loop over time steps
for timestep in tqdm(range(len(input))):
# - Send input events for this time-step
hdkutils.send_immediate_input_spikes(self._write_buffer, input[timestep])
# - Evolve one time-step on Xylo
hdkutils.advance_time_step(self._write_buffer)
# - Wait until xylo has finished the simulation of this time step
t_start = time.time()
is_timeout = False
while not hdkutils.is_xylo_ready(self._read_buffer, self._write_buffer):
if time.time() - t_start > read_timeout:
is_timeout = True
break
if is_timeout:
raise TimeoutError
# - Read all synapse and neuron states for this time step
if record:
this_state = hdkutils.read_neuron_synapse_state(
self._read_buffer, self._write_buffer, Nin, Nhidden, Nout
)
vmem_ts.append(this_state.V_mem_hid)
isyn_ts.append(this_state.I_syn_hid)
isyn2_ts.append(this_state.I_syn2_hid)
vmem_out_ts.append(this_state.V_mem_out)
isyn_out_ts.append(this_state.I_syn_out)
spikes_ts.append(this_state.Spikes_hid)
# - Read the output event register
output_events = hdkutils.read_output_events(
self._read_buffer, self._write_buffer
)[:Nout]
output_ts.append(output_events)
if record:
# - Build a recorded state dictionary
rec_dict = {
"Vmem": np.array(vmem_ts),
"Isyn": np.array(isyn_ts),
"Isyn2": np.array(isyn2_ts),
"Spikes": np.array(spikes_ts),
"Vmem_out": np.array(vmem_out_ts),
"Isyn_out": np.array(isyn_out_ts),
"times": np.arange(start_timestep, final_timestep + 1),
}
else:
rec_dict = {}
if record_power:
# - Get all recent power events from the power measurement
ps = self._power_buf.get_events()
# - Separate out power meaurement events by channel
channels = samna.xyloAudio3.MeasurementChannels
io_power = np.array([e.value for e in ps if e.channel == int(channels.Io)])
analog_power = np.array(
[e.value for e in ps if e.channel == int(channels.AnalogLogic)]
)
digital_power = np.array(
[e.value for e in ps if e.channel == int(channels.DigitalLogic)]
)
rec_dict.update(
{
"io_power": io_power,
"analog_power": analog_power,
"digital_power": digital_power,
}
)
# - Return the output spikes, the (empty) new state dictionary, and the recorded state dictionary
return np.array(output_ts), {}, rec_dict