Source code for devices.xylo.syns63300.xylo_sim

"""
XyloSim-backed module compatible with Xylo™IMU and Xylo™Audio 3. Requires XyloSim package.
"""

# - Rockpool imports
from rockpool import TSContinuous, TSEvent

from rockpool.devices.xylo.syns61300.xylo_sim import XyloSim as XyloSimV1

from xylosim.v2 import XyloSynapse, XyloLayer


# - Numpy
import numpy as np

# - Typing
from typing import Optional, Union, Any, Dict

XyloConfiguration = Union[Dict, Any]

# - Define exports
__all__ = ["XyloSim"]


[docs]class XyloSim(XyloSimV1): """ A :py:class:`.Module` simulating a digital SNN on Xylo, using XyloSim as a back-end. You should use the factory methods `.from_config` and `.from_specification` to build a concrete `.XyloSim` module. See Also: See the tutorials :ref:`/devices/xylo-overview.ipynb` and :ref:`/devices/torch-training-spiking-for-xylo.ipynb` for a high-level overview of building and deploying networks for Xylo. """
[docs] @classmethod def from_config( cls, config: XyloConfiguration, dt: float = 1e-3, output_mode: str = "Spike", *args, **kwargs, ) -> "XyloSim": """ Create a XyloSim based layer to simulate the Xylo hardware, from a configuration Args: config (XyloConfiguration): ``samna.xyloImu.XyloConfiguration`` object to specify all parameters. See samna documentation for details. dt (float, optional): Timestep for simulation. Defaults to 1e-3. output_mode (str, optional): readout mode. one of ["Isyn", "Vmem", "Spike"]. Defaults to "Spike". Returns: XyloSim: XyloSim object instance """ # - Extract network dimensions IN, IEN = np.shape(config.input.weights)[0:2] RSN = np.shape(config.hidden.weights)[0] OEN, ON = np.shape(config.readout.weights) assert ( OEN <= RSN ), f"Config must satisfy OEN <= RSN. Found OEN {OEN} and RSN {RSN}." assert ( IEN <= RSN ), f"Config must satisfy IEN <= RSN. Found IEN {IEN} and RSN {RSN}." cls.output_mode = output_mode # - Determine the size of the simulated network if np.array(config.input.weights).ndim == 2: Nin, NIEN = np.array(config.input.weights).shape Nsyn = 1 else: Nin, NIEN, Nsyn = np.array(config.input.weights).shape Nhid, *_ = np.array(config.hidden.weights).shape NOEN, Nout = np.array(config.readout.weights).shape # - Instantiate the class mod = cls( create_key=cls.__create_key, config=config, shape=(Nin, Nhid, Nout), dt=dt, output_mode=cls.output_mode, ) # - Make a storage object for the extracted configuration class _(object): pass _xylo_sim_params = _() # - Convert input weights to XyloSynapse objects _xylo_sim_params.synapses_in = [] for pre, w_pre in enumerate(config.input.weights): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) _xylo_sim_params.synapses_in.append(tmp) # - Convert recurrent weights to XyloSynapse objects _xylo_sim_params.synapses_rec = [] for pre, w_pre in enumerate(config.hidden.weights): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) _xylo_sim_params.synapses_rec.append(tmp) # - Convert output weights to XyloSynapse objects _xylo_sim_params.synapses_out = [ [] for _ in range(RSN - OEN) ] # - Skip unconnected hidden neurons for pre, w_pre in enumerate(config.readout.weights): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) _xylo_sim_params.synapses_out.append(tmp) # - Configure hidden neurons _xylo_sim_params.threshold = [] _xylo_sim_params.dash_syn = [] _xylo_sim_params.dash_mem = [] _xylo_sim_params.aliases = [] _xylo_sim_params.bias = [] for neuron in config.hidden.neurons: if neuron.alias_target: _xylo_sim_params.aliases.append([neuron.alias_target]) else: _xylo_sim_params.aliases.append([]) _xylo_sim_params.threshold.append(neuron.threshold) _xylo_sim_params.dash_mem.append(neuron.v_mem_decay) _xylo_sim_params.dash_syn.append([neuron.i_syn_decay, 0]) _xylo_sim_params.bias.append(neuron.v_mem_bias) # - Configure readout neurons _xylo_sim_params.threshold_out = [] _xylo_sim_params.dash_syn_out = [] _xylo_sim_params.dash_mem_out = [] _xylo_sim_params.bias_out = [] for neuron in config.readout.neurons: _xylo_sim_params.threshold_out.append(neuron.threshold) _xylo_sim_params.dash_mem_out.append(neuron.v_mem_decay) _xylo_sim_params.dash_syn_out.append([neuron.i_syn_decay]) _xylo_sim_params.bias_out.append(neuron.v_mem_bias) _xylo_sim_params.weight_shift_inp = config.input.weight_bit_shift _xylo_sim_params.weight_shift_rec = config.hidden.weight_bit_shift _xylo_sim_params.weight_shift_out = config.readout.weight_bit_shift _xylo_sim_params.has_bias = False if config.bias_enable: _xylo_sim_params.has_bias = True # - Instantiate a Xylo Simulation layer mod._xylo_layer = XyloLayer( synapses_in=_xylo_sim_params.synapses_in, synapses_rec=_xylo_sim_params.synapses_rec, synapses_out=_xylo_sim_params.synapses_out, aliases=_xylo_sim_params.aliases, threshold=_xylo_sim_params.threshold, threshold_out=_xylo_sim_params.threshold_out, has_bias=_xylo_sim_params.has_bias, bias=_xylo_sim_params.bias, bias_out=_xylo_sim_params.bias_out, weight_shift_inp=_xylo_sim_params.weight_shift_inp, weight_shift_rec=_xylo_sim_params.weight_shift_rec, weight_shift_out=_xylo_sim_params.weight_shift_out, dash_mem=_xylo_sim_params.dash_mem, dash_mem_out=_xylo_sim_params.dash_mem_out, dash_syns=_xylo_sim_params.dash_syn, dash_syns_out=_xylo_sim_params.dash_syn_out, name="XyloSim_XyloLayer", ) # - Store parameters and return mod._xylo_sim_params = _xylo_sim_params return mod
[docs] @classmethod def from_specification( cls, weights_in: np.ndarray, weights_out: np.ndarray, weights_rec: Optional[np.ndarray] = None, dash_mem: Optional[np.ndarray] = None, dash_mem_out: Optional[np.ndarray] = None, dash_syn: Optional[np.ndarray] = None, dash_syn_2: Optional[np.ndarray] = None, dash_syn_out: Optional[np.ndarray] = None, threshold: Optional[np.ndarray] = None, threshold_out: Optional[np.ndarray] = None, bias: Optional[np.ndarray] = None, bias_out: Optional[np.ndarray] = None, weight_shift_in: int = 0, weight_shift_rec: int = 0, weight_shift_out: int = 0, aliases: Optional[list] = None, dt: float = 1e-3, verify_config: bool = True, output_mode: str = "Spike", *args, **kwargs, ) -> "XyloSim": """ Instantiate a :py:class:`.XyloSim` module from a full set of parameters Args: weights_in (np.ndarray): An int8 matrix ``(Nin, Nhidden, 2)``, specifying input to hidden neuron connections. The final dimension specifies the inputs to the two available synapses of the hidden neurons. weights_out (np.ndarray): An int8 matrix ``(Nhidden, Nout)``, specifying hidden to output connections. weights_rec (Optional[np.ndarray]): An int8 matrix ``(Nhidden, Nhidden, 2)``, specifying recurrent connections within the hidden population. The final dimension specifies the input to the two available synapses on each hidden neuron. Default: ``0``, no recurrent connections. dash_mem (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the bitshift decay value for each hidden neuron membrane potential. Default: ``1``. dash_mem_out (Optional[np.ndarray]): An int8 matrix ``(Nout)``, specifying the bitshift decay value for each output neuron membrane potential. Default: ``1``. dash_syn (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the bitshift decay value for each hidden neuron synaptic current number 1. Default: ``1``. dash_syn_2 (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the bitshift decay value for each hidden neuron synaptic current number 2. Default: ``1``. dash_syn_out (Optional[np.ndarray]): An int8 matrix ``(Nout)``, specifying the bitshift decay value for each output neuron synaptic current. Default: ``1``. threshold (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the firing threshold for each hidden neuron. Default: ``0``. threshold_out (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the firing threshold for each output neuron. Default: ``0``. bias (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the bias for each hidden neuron. Default: ``0``. bias_out (Optional[np.ndarray]): An int8 matrix ``(Nhidden)``, specifying the bias for each output neuron. Default: ``0``. weight_shift_in (int): An integer number of bits to left-shift the input weight matrix weight_shift_rec (int): An integer number of bits to left-shift the hidden weight matrix weight_shift_out (int): An integer number of bits to left-shift the output weight matrix aliases (Optional[list]): dt (float): Simulation time step in seconds. Default: 1 ms verify_config (bool): Check for a valid configuraiton before applying it. Default ``True``. output_mode (str, optional): readout mode. one of ["Isyn", "Vmem", "Spike"]. Defaults to "Spike". Returns: :py:class:`.XyloSim`: A :py:class:`.Module` that emulates the Xylo hardware. Raises: ValueError: If ``verify_config`` is ``True`` and the configuration is not valid. """ cls.output_mode = output_mode # - Extract network dimensions IN, IEN = weights_in.shape[0:2] RSN = weights_rec.shape[0] if weights_rec is not None else IEN OEN, ON = weights_out.shape assert ( OEN <= RSN ), f"Config must satisfy OEN <= RSN. Found OEN {OEN} and RSN {RSN}." assert ( IEN <= RSN ), f"Config must satisfy IEN <= RSN. Found IEN {IEN} and RSN {RSN}." if weights_rec is None: weights_rec = np.zeros((RSN, RSN, 2), int) if dash_syn is None: dash_syn = np.zeros(RSN, int) if dash_syn_2 is None: dash_syn_2 = np.zeros(RSN, int) if dash_mem is None: dash_mem = np.zeros(RSN, int) if dash_syn_out is None: dash_syn_out = np.zeros(ON, int) if dash_mem_out is None: dash_mem_out = np.zeros(ON, int) if bias is None: bias = np.zeros(RSN, int) if bias_out is None: bias_out = np.zeros(ON, int) if aliases is None: aliases = [[] for _ in range(RSN)] if threshold is None: threshold = np.zeros(RSN, int) if threshold_out is None: threshold_out = np.zeros(ON, int) # - Instantiate the class mod = cls( create_key=cls.__create_key, config=None, dt=dt, output_mode=cls.output_mode ) # - Make a storage object for the extracted configuration class _(object): pass _xylo_sim_params = _() # - Convert input weights to XyloSynapse objects if len(weights_in.shape) == 2: weights_in = np.expand_dims(weights_in, 2) _xylo_sim_params.synapses_in = [] for pre, w_pre in enumerate(weights_in[:, :, 0]): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) if weights_in.shape[2] == 2: w2_pre = weights_in[:, :, 1][pre] for post in np.where(w2_pre)[0]: tmp.append(XyloSynapse(post, 1, w2_pre[post])) _xylo_sim_params.synapses_in.append(tmp) # - Convert recurrent weights to XyloSynapse objects if len(weights_rec.shape) == 2: weights_rec = np.expand_dims(weights_rec, 2) _xylo_sim_params.synapses_rec = [] for pre, w_pre in enumerate(weights_rec[:, :, 0]): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) if weights_rec.shape[2] == 2: w2_pre = weights_rec[:, :, 1][pre] for post in np.where(w2_pre)[0]: tmp.append(XyloSynapse(post, 1, w2_pre[post])) _xylo_sim_params.synapses_rec.append(tmp) # - Convert output weights to XyloSynapse objects _xylo_sim_params.synapses_out = [ [] for _ in range(RSN - OEN) ] # - Skip unconnected hidden neurons for pre, w_pre in enumerate(weights_out): tmp = [] for post in np.where(w_pre)[0]: tmp.append(XyloSynapse(post, 0, w_pre[post])) _xylo_sim_params.synapses_out.append(tmp) # - Configure hidden neurons _xylo_sim_params.threshold = threshold _xylo_sim_params.dash_syn = [list(l) for l in list(zip(dash_syn, dash_syn_2))] _xylo_sim_params.dash_mem = dash_mem _xylo_sim_params.aliases = aliases _xylo_sim_params.bias = bias # - Configure readout neurons _xylo_sim_params.threshold_out = threshold_out _xylo_sim_params.dash_syn_out = dash_syn_out _xylo_sim_params.dash_syn_out = [[d] for d in dash_syn_out] _xylo_sim_params.dash_mem_out = dash_mem_out _xylo_sim_params.bias_out = bias_out _xylo_sim_params.weight_shift_inp = weight_shift_in _xylo_sim_params.weight_shift_rec = weight_shift_rec _xylo_sim_params.weight_shift_out = weight_shift_out _xylo_sim_params.has_bias = any([b != 0 for b in bias]) or any( [b != 0 for b in bias_out] ) # - Instantiate a Xylo Simulation layer mod._xylo_layer = XyloLayer( synapses_in=_xylo_sim_params.synapses_in, synapses_rec=_xylo_sim_params.synapses_rec, synapses_out=_xylo_sim_params.synapses_out, aliases=_xylo_sim_params.aliases, threshold=_xylo_sim_params.threshold, threshold_out=_xylo_sim_params.threshold_out, has_bias=_xylo_sim_params.has_bias, bias=_xylo_sim_params.bias, bias_out=_xylo_sim_params.bias_out, weight_shift_inp=_xylo_sim_params.weight_shift_inp, weight_shift_rec=_xylo_sim_params.weight_shift_rec, weight_shift_out=_xylo_sim_params.weight_shift_out, dash_mem=_xylo_sim_params.dash_mem, dash_mem_out=_xylo_sim_params.dash_mem_out, dash_syns=_xylo_sim_params.dash_syn, dash_syns_out=_xylo_sim_params.dash_syn_out, name="XyloSimV2_XyloLayer", ) # - Store parameters and return mod._xylo_sim_params = _xylo_sim_params return mod
[docs] def evolve( self, input_raster: np.ndarray = None, record: bool = False, *args, **kwargs, ): # - Evolve using the xylo layer spike_out = np.array(self._xylo_layer.evolve(input_raster.astype(int).tolist())) if self.output_mode == "Spike": output = spike_out elif self.output_mode == "Vmem": output = np.array(self._xylo_layer.rec_v_mem_out).T elif self.output_mode == "Isyn": output = np.array(self._xylo_layer.rec_i_syn_out).T # - Build the recording dictionary if not record: recording = {} else: recording = { "Vmem": np.array(self._xylo_layer.rec_v_mem).T, "Isyn": np.array(self._xylo_layer.rec_i_syn).T, "Spikes": np.array(self._xylo_layer.rec_recurrent_spikes), "Vmem_out": np.array(self._xylo_layer.rec_v_mem_out).T, "Isyn_out": np.array(self._xylo_layer.rec_i_syn_out).T, } # - Return output, state and recording dictionary return output, {}, recording
[docs] def reset_state(self) -> "XyloSim": """Reset the state of this module.""" self._xylo_layer.reset_all() return self
[docs] def _wrap_recorded_state(self, state_dict: dict, t_start: float = 0.0) -> dict: args = {"dt": self.dt, "t_start": t_start} return { "Vmem": TSContinuous.from_clocked( state_dict["Vmem"], name="$V_{mem}$", **args ), "Isyn": TSContinuous.from_clocked( state_dict["Isyn"], name="$I_{syn}$", **args ), "Spikes": TSEvent.from_raster(state_dict["Spikes"], name="Spikes", **args), "Vmem_out": TSContinuous.from_clocked( state_dict["Vmem_out"], name="$V_{mem,out}$", **args ), "Isyn_out": TSContinuous.from_clocked( state_dict["Isyn_out"], name="$I_{syn,out}$", **args ), }